计算矩阵的奇异值和伪逆

G. Golub, W. Kahan
{"title":"计算矩阵的奇异值和伪逆","authors":"G. Golub, W. Kahan","doi":"10.1137/0702016","DOIUrl":null,"url":null,"abstract":"A numerically stable and fairly fast scheme is described to compute the unitary matrices U and V which transform a given matrix A into a diagonal form $\\Sigma = U^ * AV$, thus exhibiting A’s singular values on $\\Sigma $’s diagonal. The scheme first transforms A to a bidiagonal matrix J, then diagonalizes J. The scheme described here is complicated but does not suffer from the computational difficulties which occasionally afflict some previously known methods. Some applications are mentioned, in particular the use of the pseudo-inverse $A^I = V\\Sigma ^I U^* $ to solve least squares problems in a way which dampens spurious oscillation and cancellation.","PeriodicalId":250823,"journal":{"name":"Milestones in Matrix Computation","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1404","resultStr":"{\"title\":\"Calculating the singular values and pseudo-inverse of a matrix\",\"authors\":\"G. Golub, W. Kahan\",\"doi\":\"10.1137/0702016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A numerically stable and fairly fast scheme is described to compute the unitary matrices U and V which transform a given matrix A into a diagonal form $\\\\Sigma = U^ * AV$, thus exhibiting A’s singular values on $\\\\Sigma $’s diagonal. The scheme first transforms A to a bidiagonal matrix J, then diagonalizes J. The scheme described here is complicated but does not suffer from the computational difficulties which occasionally afflict some previously known methods. Some applications are mentioned, in particular the use of the pseudo-inverse $A^I = V\\\\Sigma ^I U^* $ to solve least squares problems in a way which dampens spurious oscillation and cancellation.\",\"PeriodicalId\":250823,\"journal\":{\"name\":\"Milestones in Matrix Computation\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1404\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Milestones in Matrix Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/0702016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Milestones in Matrix Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0702016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1404

摘要

本文描述了一种计算一元矩阵U和V的数值稳定且相当快速的方法,它将给定的矩阵A转换成$\Sigma = U^ * AV$的对角线形式,从而显示出A在$\Sigma $对角线上的奇异值。该方案首先将A转换为双对角矩阵J,然后对角化J。这里描述的方案很复杂,但不会遇到以前一些已知方法偶尔会遇到的计算困难。文中提到了一些应用,特别是使用伪逆函数A^I = V\Sigma ^I U^* $来解决最小二乘问题,从而抑制了伪振荡和消去。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calculating the singular values and pseudo-inverse of a matrix
A numerically stable and fairly fast scheme is described to compute the unitary matrices U and V which transform a given matrix A into a diagonal form $\Sigma = U^ * AV$, thus exhibiting A’s singular values on $\Sigma $’s diagonal. The scheme first transforms A to a bidiagonal matrix J, then diagonalizes J. The scheme described here is complicated but does not suffer from the computational difficulties which occasionally afflict some previously known methods. Some applications are mentioned, in particular the use of the pseudo-inverse $A^I = V\Sigma ^I U^* $ to solve least squares problems in a way which dampens spurious oscillation and cancellation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信