Adriana Fanggidae, D. M. Sihotang, Adnan Putra Rihi Pati
{"title":"PENGENALAN POLA SIDIK JARI DENGAN METODE LOCAL BINARY PATTERN DAN LEARNING VECTOR QUANTIZATION","authors":"Adriana Fanggidae, D. M. Sihotang, Adnan Putra Rihi Pati","doi":"10.35508/jicon.v7i2.1635","DOIUrl":null,"url":null,"abstract":"Sidik jari merupakan strukur genetika dalam bentuk pola yang sangat detail dan tanda yang melekat pada diri manusia. Banyak sistem biometrika yang menggunakan sidik jari sebagai data masukan, karena sifat dari sidik jari setiap individu berbeda meskipun kembar identik dan tidak berubah kecuali mendapat kecelakaan. Metode yang digunakan dalam penelitian ini yaitu segmentasi dengan algoritma Otsu thresholding, ekstraksi ciri dengan algoritma Local Binary Pattern (LBP), dan pembelajaran dengan algoritma Learning Vector Quantization (LVQ). Data yang digunakan adalah citra sidik jari jempol berukuran 200 x 300 piksel, berjenis keabuan dan berformat *.jpg. Citra sidik jari terdiri dari 25 orang, masing-masing orang memiliki 6 data latih dan 2 data uji. Pengujian data latih dan data uji dilakukan kepada empat sistem yaitu sistem dengan jumlah ciri LBP = 8, 64, 128 dan 256 dan menggunakan masing-masing 2 buah data set dimana data set 1 berjumlah 15 orang dan data set 2 berjumlah 25 orang. Hasil pengujian keempat sistem menunjukkan bahwa sistem dengan jumlah ciri LBP = 128 merupakan sistem yang terbaik dengan kombinasi akurasi sistem yang tinggi dan juga waktu pembelajaran yang cepat.","PeriodicalId":334895,"journal":{"name":"Jurnal Komputer dan Informatika","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Komputer dan Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35508/jicon.v7i2.1635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

指纹是一种基因结构,具有非常详细的图案和人类标记。许多炼金术系统使用指纹作为输入数据,因为每个人的指纹特征都是不同的,尽管是同卵双胞胎,除非发生意外,否则不会改变。本研究采用的方法是与大津thresholding算法小规模算法、本地二进制算法(LBP)的提取特征,以及与学习矢量量量化算法(LVQ)一起学习。所使用的数据是200×300像素的拇指指纹图像,具有表现性和格式*.jpg。指纹图像由25个人组成,每个人有6个培训数据和2个测试数据。测试测试和测试数据是对四个系统进行的,即LBP的数量= 8、64、128和256,并使用每个系统的2组数据,其中1组的数据为15人,2组的数据为25人。第四个系统的测试结果表明,LBP = 128的系统数量是最好的,系统准确率高,学习时间快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PENGENALAN POLA SIDIK JARI DENGAN METODE LOCAL BINARY PATTERN DAN LEARNING VECTOR QUANTIZATION
Sidik jari merupakan strukur genetika dalam bentuk pola yang sangat detail dan tanda yang melekat pada diri manusia. Banyak sistem biometrika yang menggunakan sidik jari sebagai data masukan, karena sifat dari sidik jari setiap individu berbeda meskipun kembar identik dan tidak berubah kecuali mendapat kecelakaan. Metode yang digunakan dalam penelitian ini yaitu segmentasi dengan algoritma Otsu thresholding, ekstraksi ciri dengan algoritma Local Binary Pattern (LBP), dan pembelajaran dengan algoritma Learning Vector Quantization (LVQ). Data yang digunakan adalah citra sidik jari jempol berukuran 200 x 300 piksel, berjenis keabuan dan berformat *.jpg. Citra sidik jari terdiri dari 25 orang, masing-masing orang memiliki 6 data latih dan 2 data uji. Pengujian data latih dan data uji dilakukan kepada empat sistem yaitu sistem dengan jumlah ciri LBP = 8, 64, 128 dan 256 dan menggunakan masing-masing 2 buah data set dimana data set 1 berjumlah 15 orang dan data set 2 berjumlah 25 orang. Hasil pengujian keempat sistem menunjukkan bahwa sistem dengan jumlah ciri LBP = 128 merupakan sistem yang terbaik dengan kombinasi akurasi sistem yang tinggi dan juga waktu pembelajaran yang cepat.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信