CuO修饰的硅纳米线对H2O2的无酶光电传感

Ruoxi Zhang, Shengchen Ke, Wenxiang Lu, Weijian Zhu, Lu Ma, Linling Qin, Shaolong Wu
{"title":"CuO修饰的硅纳米线对H2O2的无酶光电传感","authors":"Ruoxi Zhang, Shengchen Ke, Wenxiang Lu, Weijian Zhu, Lu Ma, Linling Qin, Shaolong Wu","doi":"10.1117/12.2683954","DOIUrl":null,"url":null,"abstract":"Constructing novel hybrid nanostructure has become an effective strategy to enhance the performance of photoelectrochemical (PEC) biosensors. However, most of the H2O2-sensing photoelectrodes require enzyme modification, which limits the working environment and sensing performance. Herein, the burr-like CuO nanostructures are modified on the entire surfaces of the ordered Si nanowires (SiNWs) by using a combination of magnetron sputtering and hydrothermal growth. The optimized CuO@SiNWs heterojunction with a core-shell structure enables enzyme-free PEC detection of H2O2, achieving a sensitivity of 227.76 μAmM-1cm-2 in the concentration range of 0–588 mM and a detection limit of 7.14 μM (Signal/Noise=3). The excellent sensing performance of the CuO@SiNWs is attributed to the large specific surface area provided by SiNWs and the CuO possess desired H2O2-catalytic activity while providing a great number of active sites. In addition, the CuO@SiNWs demonstrates satisfactory optical absorption. This work demonstrates that enzyme-free and highly sensitive H2O2 detection can be achieved by hybrid nanostructure, providing an alternative route to H2O2 sensing.","PeriodicalId":184319,"journal":{"name":"Optical Frontiers","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CuO modified Si nanowires for enzyme-free photoelectrochemical sensing of H2O2\",\"authors\":\"Ruoxi Zhang, Shengchen Ke, Wenxiang Lu, Weijian Zhu, Lu Ma, Linling Qin, Shaolong Wu\",\"doi\":\"10.1117/12.2683954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constructing novel hybrid nanostructure has become an effective strategy to enhance the performance of photoelectrochemical (PEC) biosensors. However, most of the H2O2-sensing photoelectrodes require enzyme modification, which limits the working environment and sensing performance. Herein, the burr-like CuO nanostructures are modified on the entire surfaces of the ordered Si nanowires (SiNWs) by using a combination of magnetron sputtering and hydrothermal growth. The optimized CuO@SiNWs heterojunction with a core-shell structure enables enzyme-free PEC detection of H2O2, achieving a sensitivity of 227.76 μAmM-1cm-2 in the concentration range of 0–588 mM and a detection limit of 7.14 μM (Signal/Noise=3). The excellent sensing performance of the CuO@SiNWs is attributed to the large specific surface area provided by SiNWs and the CuO possess desired H2O2-catalytic activity while providing a great number of active sites. In addition, the CuO@SiNWs demonstrates satisfactory optical absorption. This work demonstrates that enzyme-free and highly sensitive H2O2 detection can be achieved by hybrid nanostructure, providing an alternative route to H2O2 sensing.\",\"PeriodicalId\":184319,\"journal\":{\"name\":\"Optical Frontiers\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2683954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2683954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

构建新型杂化纳米结构已成为提高光电化学(PEC)生物传感器性能的有效策略。然而,大多数h2o2传感光电极需要酶修饰,这限制了工作环境和传感性能。本文采用磁控溅射和水热生长相结合的方法在有序硅纳米线(SiNWs)的整个表面上修饰了毛刺状的CuO纳米结构。优化后的CuO@SiNWs异质结核壳结构实现了H2O2的无酶PEC检测,在0 ~ 588 mM的浓度范围内灵敏度为227.76 μ am -1cm-2,检出限为7.14 μM(信噪比=3)。CuO@SiNWs优异的传感性能归功于SiNWs提供的大比表面积和CuO在提供大量活性位点的同时具有理想的h2o2催化活性。此外,CuO@SiNWs具有良好的光吸收性能。这项工作表明,通过混合纳米结构可以实现无酶和高灵敏度的H2O2检测,为H2O2传感提供了另一种途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CuO modified Si nanowires for enzyme-free photoelectrochemical sensing of H2O2
Constructing novel hybrid nanostructure has become an effective strategy to enhance the performance of photoelectrochemical (PEC) biosensors. However, most of the H2O2-sensing photoelectrodes require enzyme modification, which limits the working environment and sensing performance. Herein, the burr-like CuO nanostructures are modified on the entire surfaces of the ordered Si nanowires (SiNWs) by using a combination of magnetron sputtering and hydrothermal growth. The optimized CuO@SiNWs heterojunction with a core-shell structure enables enzyme-free PEC detection of H2O2, achieving a sensitivity of 227.76 μAmM-1cm-2 in the concentration range of 0–588 mM and a detection limit of 7.14 μM (Signal/Noise=3). The excellent sensing performance of the CuO@SiNWs is attributed to the large specific surface area provided by SiNWs and the CuO possess desired H2O2-catalytic activity while providing a great number of active sites. In addition, the CuO@SiNWs demonstrates satisfactory optical absorption. This work demonstrates that enzyme-free and highly sensitive H2O2 detection can be achieved by hybrid nanostructure, providing an alternative route to H2O2 sensing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信