{"title":"任意函数glivenko-cantelli类及其对不同依赖类型的应用","authors":"H. Sangaré, G. Lo, M. Traore","doi":"10.17654/ts060020041","DOIUrl":null,"url":null,"abstract":"Using a general strong law of large number proved by Sangar\\'e and Lo (2015) and the entropy numbers, we provide functional Glivenko-Cantelli (GC) classes for arbitrary stationary real-valued random variables (rrv's). Next, the general results are particularized for different types of dependence (association, $\\phi$-mixing, in particular) and compared with available results in the literature.","PeriodicalId":430943,"journal":{"name":"Far East Journal of Theoretical Statistics","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ARBITRARY FUNCTIONAL GLIVENKO-CANTELLI CLASSES AND APPLICATIONS TO DIFFERENT TYPES OF DEPENDENCE\",\"authors\":\"H. Sangaré, G. Lo, M. Traore\",\"doi\":\"10.17654/ts060020041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using a general strong law of large number proved by Sangar\\\\'e and Lo (2015) and the entropy numbers, we provide functional Glivenko-Cantelli (GC) classes for arbitrary stationary real-valued random variables (rrv's). Next, the general results are particularized for different types of dependence (association, $\\\\phi$-mixing, in particular) and compared with available results in the literature.\",\"PeriodicalId\":430943,\"journal\":{\"name\":\"Far East Journal of Theoretical Statistics\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Far East Journal of Theoretical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17654/ts060020041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Far East Journal of Theoretical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17654/ts060020041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ARBITRARY FUNCTIONAL GLIVENKO-CANTELLI CLASSES AND APPLICATIONS TO DIFFERENT TYPES OF DEPENDENCE
Using a general strong law of large number proved by Sangar\'e and Lo (2015) and the entropy numbers, we provide functional Glivenko-Cantelli (GC) classes for arbitrary stationary real-valued random variables (rrv's). Next, the general results are particularized for different types of dependence (association, $\phi$-mixing, in particular) and compared with available results in the literature.