基于支持向量机的手印平假名识别

K. Maruyama, M. Maruyama, H. Miyao, Y. Nakano
{"title":"基于支持向量机的手印平假名识别","authors":"K. Maruyama, M. Maruyama, H. Miyao, Y. Nakano","doi":"10.1109/IWFHR.2002.1030884","DOIUrl":null,"url":null,"abstract":"Describes a method to improve the cumulative recognition rates of pattern recognition using a decision directed acyclic graph (DDAG) based on support vector machines (SVM). Though the original DDAG has high level of performance and its execution speed is fast, it does not consider the so-called cumulative recognition rate. We construct a DDAG which can incorporate the cumulative recognition rate. As a result of our experiment for handprinted Hiragana characters in JEITA-HP, the cumulative recognition rate is improved and its execution time is almost the same as the original DDAG and 30 times faster than the Max Win Algorithm which is one of the famous recognition methods using support vector machines for a multi-class problem.","PeriodicalId":114017,"journal":{"name":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Handprinted Hiragana recognition using support vector machines\",\"authors\":\"K. Maruyama, M. Maruyama, H. Miyao, Y. Nakano\",\"doi\":\"10.1109/IWFHR.2002.1030884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Describes a method to improve the cumulative recognition rates of pattern recognition using a decision directed acyclic graph (DDAG) based on support vector machines (SVM). Though the original DDAG has high level of performance and its execution speed is fast, it does not consider the so-called cumulative recognition rate. We construct a DDAG which can incorporate the cumulative recognition rate. As a result of our experiment for handprinted Hiragana characters in JEITA-HP, the cumulative recognition rate is improved and its execution time is almost the same as the original DDAG and 30 times faster than the Max Win Algorithm which is one of the famous recognition methods using support vector machines for a multi-class problem.\",\"PeriodicalId\":114017,\"journal\":{\"name\":\"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWFHR.2002.1030884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWFHR.2002.1030884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

描述了一种基于支持向量机(SVM)的决策有向无环图(DDAG)提高模式识别累积识别率的方法。原始的DDAG虽然性能水平高,执行速度快,但没有考虑所谓的累积识别率。我们构造了一个包含累积识别率的DDAG。通过对JEITA-HP中手印平假名字符的实验,我们的累积识别率得到了提高,其执行时间与原始的DDAG几乎相同,比著名的支持向量机多类识别方法之一Max Win算法快30倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Handprinted Hiragana recognition using support vector machines
Describes a method to improve the cumulative recognition rates of pattern recognition using a decision directed acyclic graph (DDAG) based on support vector machines (SVM). Though the original DDAG has high level of performance and its execution speed is fast, it does not consider the so-called cumulative recognition rate. We construct a DDAG which can incorporate the cumulative recognition rate. As a result of our experiment for handprinted Hiragana characters in JEITA-HP, the cumulative recognition rate is improved and its execution time is almost the same as the original DDAG and 30 times faster than the Max Win Algorithm which is one of the famous recognition methods using support vector machines for a multi-class problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信