{"title":"基于支持向量机的手印平假名识别","authors":"K. Maruyama, M. Maruyama, H. Miyao, Y. Nakano","doi":"10.1109/IWFHR.2002.1030884","DOIUrl":null,"url":null,"abstract":"Describes a method to improve the cumulative recognition rates of pattern recognition using a decision directed acyclic graph (DDAG) based on support vector machines (SVM). Though the original DDAG has high level of performance and its execution speed is fast, it does not consider the so-called cumulative recognition rate. We construct a DDAG which can incorporate the cumulative recognition rate. As a result of our experiment for handprinted Hiragana characters in JEITA-HP, the cumulative recognition rate is improved and its execution time is almost the same as the original DDAG and 30 times faster than the Max Win Algorithm which is one of the famous recognition methods using support vector machines for a multi-class problem.","PeriodicalId":114017,"journal":{"name":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Handprinted Hiragana recognition using support vector machines\",\"authors\":\"K. Maruyama, M. Maruyama, H. Miyao, Y. Nakano\",\"doi\":\"10.1109/IWFHR.2002.1030884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Describes a method to improve the cumulative recognition rates of pattern recognition using a decision directed acyclic graph (DDAG) based on support vector machines (SVM). Though the original DDAG has high level of performance and its execution speed is fast, it does not consider the so-called cumulative recognition rate. We construct a DDAG which can incorporate the cumulative recognition rate. As a result of our experiment for handprinted Hiragana characters in JEITA-HP, the cumulative recognition rate is improved and its execution time is almost the same as the original DDAG and 30 times faster than the Max Win Algorithm which is one of the famous recognition methods using support vector machines for a multi-class problem.\",\"PeriodicalId\":114017,\"journal\":{\"name\":\"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWFHR.2002.1030884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWFHR.2002.1030884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Handprinted Hiragana recognition using support vector machines
Describes a method to improve the cumulative recognition rates of pattern recognition using a decision directed acyclic graph (DDAG) based on support vector machines (SVM). Though the original DDAG has high level of performance and its execution speed is fast, it does not consider the so-called cumulative recognition rate. We construct a DDAG which can incorporate the cumulative recognition rate. As a result of our experiment for handprinted Hiragana characters in JEITA-HP, the cumulative recognition rate is improved and its execution time is almost the same as the original DDAG and 30 times faster than the Max Win Algorithm which is one of the famous recognition methods using support vector machines for a multi-class problem.