城市传感器网络的自主空间查询处理模型

Marcos Aurélio Carrero, Rone Ilídio da Silva, A. Santos, Carmem S. Hara
{"title":"城市传感器网络的自主空间查询处理模型","authors":"Marcos Aurélio Carrero, Rone Ilídio da Silva, A. Santos, Carmem S. Hara","doi":"10.1109/SBRC.2015.20","DOIUrl":null,"url":null,"abstract":"Wireless Sensor Networks (WSN) in urban environments manage a large amount of sensoring data. The deployment of spatial query processing in a decentralized and autonomous large-scale WSN is a major challenge due to the network resources constraints. This paper proposes ASQPM, a scalable and autonomous model for data storage and spatial query processing. Scalability is provided by grouping sensors into clusters based on the spatial similarity of their readings. The query processing efficiency relies on the concept of repositories, which are regions in the monitored area that concentrate information, storing the readings of a set of clusters. The experimental results show that it is more effective for query processing than classical approaches.","PeriodicalId":307266,"journal":{"name":"2015 XXXIII Brazilian Symposium on Computer Networks and Distributed Systems","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Autonomic Spatial Query Processing Model for Urban Sensor Networks\",\"authors\":\"Marcos Aurélio Carrero, Rone Ilídio da Silva, A. Santos, Carmem S. Hara\",\"doi\":\"10.1109/SBRC.2015.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless Sensor Networks (WSN) in urban environments manage a large amount of sensoring data. The deployment of spatial query processing in a decentralized and autonomous large-scale WSN is a major challenge due to the network resources constraints. This paper proposes ASQPM, a scalable and autonomous model for data storage and spatial query processing. Scalability is provided by grouping sensors into clusters based on the spatial similarity of their readings. The query processing efficiency relies on the concept of repositories, which are regions in the monitored area that concentrate information, storing the readings of a set of clusters. The experimental results show that it is more effective for query processing than classical approaches.\",\"PeriodicalId\":307266,\"journal\":{\"name\":\"2015 XXXIII Brazilian Symposium on Computer Networks and Distributed Systems\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 XXXIII Brazilian Symposium on Computer Networks and Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBRC.2015.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 XXXIII Brazilian Symposium on Computer Networks and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRC.2015.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

城市环境中的无线传感器网络(WSN)管理着大量的传感数据。由于网络资源的限制,在分散自治的大规模无线传感器网络中部署空间查询处理是一个重大挑战。本文提出了一种可扩展的、自治的数据存储和空间查询处理模型ASQPM。可扩展性是通过根据传感器读数的空间相似性将传感器分组到集群中来提供的。查询处理效率依赖于存储库的概念,存储库是监视区域中集中信息的区域,存储一组集群的读数。实验结果表明,该方法比传统的查询处理方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Autonomic Spatial Query Processing Model for Urban Sensor Networks
Wireless Sensor Networks (WSN) in urban environments manage a large amount of sensoring data. The deployment of spatial query processing in a decentralized and autonomous large-scale WSN is a major challenge due to the network resources constraints. This paper proposes ASQPM, a scalable and autonomous model for data storage and spatial query processing. Scalability is provided by grouping sensors into clusters based on the spatial similarity of their readings. The query processing efficiency relies on the concept of repositories, which are regions in the monitored area that concentrate information, storing the readings of a set of clusters. The experimental results show that it is more effective for query processing than classical approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信