{"title":"空间L_p^1(D)$的紧集生成正规域和可移动奇异点的结构","authors":"V. Shlyk","doi":"10.1070/SM1992V071N02ABEH002134","DOIUrl":null,"url":null,"abstract":"A study is made of the properties of -normal domains in (), which will be minimal in the Koebe sense or normal in the Grotzsch sense when . Descriptions are obtained of removable singularities for the space and for compact sets generating -normal domains, in terms of the theory of contingencies and -dimensional bi-Lipschitz -compact sets.","PeriodicalId":208776,"journal":{"name":"Mathematics of The Ussr-sbornik","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"THE STRUCTURE OF COMPACT SETS GENERATING NORMAL DOMAINS, AND REMOVABLE SINGULARITIES FOR THE SPACE $ L_p^1(D)$\",\"authors\":\"V. Shlyk\",\"doi\":\"10.1070/SM1992V071N02ABEH002134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A study is made of the properties of -normal domains in (), which will be minimal in the Koebe sense or normal in the Grotzsch sense when . Descriptions are obtained of removable singularities for the space and for compact sets generating -normal domains, in terms of the theory of contingencies and -dimensional bi-Lipschitz -compact sets.\",\"PeriodicalId\":208776,\"journal\":{\"name\":\"Mathematics of The Ussr-sbornik\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-sbornik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/SM1992V071N02ABEH002134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-sbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/SM1992V071N02ABEH002134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
THE STRUCTURE OF COMPACT SETS GENERATING NORMAL DOMAINS, AND REMOVABLE SINGULARITIES FOR THE SPACE $ L_p^1(D)$
A study is made of the properties of -normal domains in (), which will be minimal in the Koebe sense or normal in the Grotzsch sense when . Descriptions are obtained of removable singularities for the space and for compact sets generating -normal domains, in terms of the theory of contingencies and -dimensional bi-Lipschitz -compact sets.