纵向流行病学研究的参与者可以从他们以前的进化中进行分类吗?

Uli Niemann, Tommy Hielscher, M. Spiliopoulou, H. Völzke, J. Kühn
{"title":"纵向流行病学研究的参与者可以从他们以前的进化中进行分类吗?","authors":"Uli Niemann, Tommy Hielscher, M. Spiliopoulou, H. Völzke, J. Kühn","doi":"10.1109/CBMS.2015.12","DOIUrl":null,"url":null,"abstract":"Medical research can greatly benefit from advances in data mining. We propose a mining approach for cohort analysis in a longitudinal population-based epidemiological study, and show that modelling and exploiting the evolution of cohort participants over time improves classification quality towards an outcome (a disease). Our mining workflow encompasses steps for tracing the evolution of the cohort participants and for using evolution features in classification. We show that our approach separates better between classes and that change in the values of variables is predictive. We report on results for the liver disorder hepatic steatosis (high fat accumulation in the liver), but our approach is appropriate for classification of longitudinal epidemiological data on further disorders.","PeriodicalId":164356,"journal":{"name":"2015 IEEE 28th International Symposium on Computer-Based Medical Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Can We Classify the Participants of a Longitudinal Epidemiological Study from Their Previous Evolution?\",\"authors\":\"Uli Niemann, Tommy Hielscher, M. Spiliopoulou, H. Völzke, J. Kühn\",\"doi\":\"10.1109/CBMS.2015.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Medical research can greatly benefit from advances in data mining. We propose a mining approach for cohort analysis in a longitudinal population-based epidemiological study, and show that modelling and exploiting the evolution of cohort participants over time improves classification quality towards an outcome (a disease). Our mining workflow encompasses steps for tracing the evolution of the cohort participants and for using evolution features in classification. We show that our approach separates better between classes and that change in the values of variables is predictive. We report on results for the liver disorder hepatic steatosis (high fat accumulation in the liver), but our approach is appropriate for classification of longitudinal epidemiological data on further disorders.\",\"PeriodicalId\":164356,\"journal\":{\"name\":\"2015 IEEE 28th International Symposium on Computer-Based Medical Systems\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 28th International Symposium on Computer-Based Medical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2015.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 28th International Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2015.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

医学研究可以极大地受益于数据挖掘的进步。我们提出了一种在纵向基于人群的流行病学研究中进行队列分析的挖掘方法,并表明建模和利用队列参与者随时间的演变可以提高对结果(疾病)的分类质量。我们的挖掘工作流程包括跟踪队列参与者的进化和在分类中使用进化特征的步骤。我们表明,我们的方法可以更好地在类之间分离,并且变量值的变化是可预测的。我们报告的是肝脏疾病肝脂肪变性(肝脏高脂肪堆积)的结果,但我们的方法适用于进一步疾病的纵向流行病学数据分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Can We Classify the Participants of a Longitudinal Epidemiological Study from Their Previous Evolution?
Medical research can greatly benefit from advances in data mining. We propose a mining approach for cohort analysis in a longitudinal population-based epidemiological study, and show that modelling and exploiting the evolution of cohort participants over time improves classification quality towards an outcome (a disease). Our mining workflow encompasses steps for tracing the evolution of the cohort participants and for using evolution features in classification. We show that our approach separates better between classes and that change in the values of variables is predictive. We report on results for the liver disorder hepatic steatosis (high fat accumulation in the liver), but our approach is appropriate for classification of longitudinal epidemiological data on further disorders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信