时间模式识别的机器学习模型

Catherine Inibhunu, C. McGregor
{"title":"时间模式识别的机器学习模型","authors":"Catherine Inibhunu, C. McGregor","doi":"10.1109/EMBSISC.2016.7508614","DOIUrl":null,"url":null,"abstract":"Temporal abstraction and data mining are two research fields that have tried to synthesis time oriented data and bring out an understanding on the hidden relationships that may exist between time oriented events. In clinical settings, having the ability to know the hidden relationships on patient data as they unfold could help save a life by aiding in detection of conditions that are not obvious to clinicians and healthcare workers. Understanding the hidden patterns is a huge challenge due to the exponential search space unique to time-series data. In this paper, we propose a temporal pattern recognition model based on dimension reduction and similarity measures thereby maintaining the temporal nature of the raw data.","PeriodicalId":361773,"journal":{"name":"2016 IEEE EMBS International Student Conference (ISC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Machine learning model for temporal pattern recognition\",\"authors\":\"Catherine Inibhunu, C. McGregor\",\"doi\":\"10.1109/EMBSISC.2016.7508614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temporal abstraction and data mining are two research fields that have tried to synthesis time oriented data and bring out an understanding on the hidden relationships that may exist between time oriented events. In clinical settings, having the ability to know the hidden relationships on patient data as they unfold could help save a life by aiding in detection of conditions that are not obvious to clinicians and healthcare workers. Understanding the hidden patterns is a huge challenge due to the exponential search space unique to time-series data. In this paper, we propose a temporal pattern recognition model based on dimension reduction and similarity measures thereby maintaining the temporal nature of the raw data.\",\"PeriodicalId\":361773,\"journal\":{\"name\":\"2016 IEEE EMBS International Student Conference (ISC)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE EMBS International Student Conference (ISC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBSISC.2016.7508614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE EMBS International Student Conference (ISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBSISC.2016.7508614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

时间抽象和数据挖掘是试图合成面向时间的数据并揭示面向时间的事件之间可能存在的隐藏关系的两个研究领域。在临床环境中,有能力了解患者数据中隐藏的关系,可以通过帮助检测临床医生和医护人员不明显的疾病来帮助挽救生命。由于时间序列数据特有的指数搜索空间,理解隐藏模式是一个巨大的挑战。在本文中,我们提出了一种基于降维和相似度量的时间模式识别模型,从而保持了原始数据的时间性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning model for temporal pattern recognition
Temporal abstraction and data mining are two research fields that have tried to synthesis time oriented data and bring out an understanding on the hidden relationships that may exist between time oriented events. In clinical settings, having the ability to know the hidden relationships on patient data as they unfold could help save a life by aiding in detection of conditions that are not obvious to clinicians and healthcare workers. Understanding the hidden patterns is a huge challenge due to the exponential search space unique to time-series data. In this paper, we propose a temporal pattern recognition model based on dimension reduction and similarity measures thereby maintaining the temporal nature of the raw data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信