地震威胁下的长期决策

Carmen Camacho, Yu Sun
{"title":"地震威胁下的长期决策","authors":"Carmen Camacho, Yu Sun","doi":"10.2139/ssrn.3298413","DOIUrl":null,"url":null,"abstract":"Under the threat of earthquakes, long-term policy makers need tools to decide optimally on the economic trajectories that maximize the society welfare. Tools should be flexible and account for the consequences of earthquakes, incorporating the best estimate of their frequency and intensity. In this regard, we propose in this paper a modeling strategy that combines optimal control techniques and Bayesian learning: after an earthquake occurs, policy makers can improve their knowledge and adjust policies optimally. Two numerical examples illustrate the advantages of our modelling strategy along different dimensions. While Japan symbolizes the policy maker who has learned from earthquakes protecting the economy accordingly; Italy helps us illustrate the importance of prevention capital.","PeriodicalId":210701,"journal":{"name":"Decision-Making in Public Policy & the Social Good eJournal","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Longterm Decision Making Under the Threat of Earthquakes\",\"authors\":\"Carmen Camacho, Yu Sun\",\"doi\":\"10.2139/ssrn.3298413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under the threat of earthquakes, long-term policy makers need tools to decide optimally on the economic trajectories that maximize the society welfare. Tools should be flexible and account for the consequences of earthquakes, incorporating the best estimate of their frequency and intensity. In this regard, we propose in this paper a modeling strategy that combines optimal control techniques and Bayesian learning: after an earthquake occurs, policy makers can improve their knowledge and adjust policies optimally. Two numerical examples illustrate the advantages of our modelling strategy along different dimensions. While Japan symbolizes the policy maker who has learned from earthquakes protecting the economy accordingly; Italy helps us illustrate the importance of prevention capital.\",\"PeriodicalId\":210701,\"journal\":{\"name\":\"Decision-Making in Public Policy & the Social Good eJournal\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision-Making in Public Policy & the Social Good eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3298413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision-Making in Public Policy & the Social Good eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3298413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在地震的威胁下,长期政策制定者需要工具来最优地决定社会福利最大化的经济轨迹。工具应该是灵活的,并考虑到地震的后果,包括对地震频率和强度的最佳估计。为此,本文提出了一种将最优控制技术与贝叶斯学习相结合的建模策略:在地震发生后,决策者可以提高他们的知识水平并最优地调整政策。两个数值例子说明了我们的建模策略沿不同维度的优势。日本象征着从地震中吸取教训的决策者相应地保护了经济;意大利帮助我们说明了预防资本的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Longterm Decision Making Under the Threat of Earthquakes
Under the threat of earthquakes, long-term policy makers need tools to decide optimally on the economic trajectories that maximize the society welfare. Tools should be flexible and account for the consequences of earthquakes, incorporating the best estimate of their frequency and intensity. In this regard, we propose in this paper a modeling strategy that combines optimal control techniques and Bayesian learning: after an earthquake occurs, policy makers can improve their knowledge and adjust policies optimally. Two numerical examples illustrate the advantages of our modelling strategy along different dimensions. While Japan symbolizes the policy maker who has learned from earthquakes protecting the economy accordingly; Italy helps us illustrate the importance of prevention capital.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信