空间效率高的概率数据结构带状过滤器:分析、设计和优化实现

B. P. Linuwih, G. B. Satrya, S. Mugitama, M. S. Maulana
{"title":"空间效率高的概率数据结构带状过滤器:分析、设计和优化实现","authors":"B. P. Linuwih, G. B. Satrya, S. Mugitama, M. S. Maulana","doi":"10.1109/iSemantic55962.2022.9920402","DOIUrl":null,"url":null,"abstract":"Filtering a data structure that is too close to a set of hashable keys may return false positives. Existing practical filters, such as the Bloom filter, require a space overhead of at least 20% because Bloom only performs a probabilistic check of assigned memberships, internal hashes, and can easily populate the entire filter causing potential minor DOS. This paper, as a further study, proves the Ribbon filter as a novel filter for static sets with various configurable space overheads and false positive rates at competitive speeds over that range. In many cases, the Ribbon is faster than existing filters for the same space overhead or can achieve under 10% space overhead with some additional CPU time. Ribbon filters resemble Xor filters modified to maximize locality and are constructed by solving linear band-like systems over Boolean variables.","PeriodicalId":360042,"journal":{"name":"2022 International Seminar on Application for Technology of Information and Communication (iSemantic)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Space-Efficient Probabilistic Data Structure Ribbon Filter: Analysis, Design, and Optimized Implementation\",\"authors\":\"B. P. Linuwih, G. B. Satrya, S. Mugitama, M. S. Maulana\",\"doi\":\"10.1109/iSemantic55962.2022.9920402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Filtering a data structure that is too close to a set of hashable keys may return false positives. Existing practical filters, such as the Bloom filter, require a space overhead of at least 20% because Bloom only performs a probabilistic check of assigned memberships, internal hashes, and can easily populate the entire filter causing potential minor DOS. This paper, as a further study, proves the Ribbon filter as a novel filter for static sets with various configurable space overheads and false positive rates at competitive speeds over that range. In many cases, the Ribbon is faster than existing filters for the same space overhead or can achieve under 10% space overhead with some additional CPU time. Ribbon filters resemble Xor filters modified to maximize locality and are constructed by solving linear band-like systems over Boolean variables.\",\"PeriodicalId\":360042,\"journal\":{\"name\":\"2022 International Seminar on Application for Technology of Information and Communication (iSemantic)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Seminar on Application for Technology of Information and Communication (iSemantic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iSemantic55962.2022.9920402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Seminar on Application for Technology of Information and Communication (iSemantic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSemantic55962.2022.9920402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

过滤与一组可散列键过于接近的数据结构可能会返回误报。现有的实用过滤器,如Bloom过滤器,需要至少20%的空间开销,因为Bloom只对分配的成员、内部哈希执行概率检查,并且可以很容易地填充整个过滤器,从而导致潜在的轻微DOS。作为进一步的研究,本文证明了带状滤波器在该范围内具有各种可配置的空间开销和假阳性率的静态集上是一种新的滤波器。在许多情况下,对于相同的空间开销,Ribbon比现有的过滤器要快,或者可以在使用一些额外的CPU时间的情况下实现低于10%的空间开销。带状滤波器类似于Xor滤波器,通过在布尔变量上求解线性带状系统来实现局部最大化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Space-Efficient Probabilistic Data Structure Ribbon Filter: Analysis, Design, and Optimized Implementation
Filtering a data structure that is too close to a set of hashable keys may return false positives. Existing practical filters, such as the Bloom filter, require a space overhead of at least 20% because Bloom only performs a probabilistic check of assigned memberships, internal hashes, and can easily populate the entire filter causing potential minor DOS. This paper, as a further study, proves the Ribbon filter as a novel filter for static sets with various configurable space overheads and false positive rates at competitive speeds over that range. In many cases, the Ribbon is faster than existing filters for the same space overhead or can achieve under 10% space overhead with some additional CPU time. Ribbon filters resemble Xor filters modified to maximize locality and are constructed by solving linear band-like systems over Boolean variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信