Shyamnath Gollakota, Fadel M. Adib, D. Katabi, S. Seshan
{"title":"清除射频烟雾:使802.11n对跨技术干扰具有鲁棒性","authors":"Shyamnath Gollakota, Fadel M. Adib, D. Katabi, S. Seshan","doi":"10.1145/2018436.2018456","DOIUrl":null,"url":null,"abstract":"Recent studies show that high-power cross-technology interference is becoming a major problem in today's 802.11 networks. Devices like baby monitors and cordless phones can cause a wireless LAN to lose connectivity. The existing approach for dealing with such high-power interferers makes the 802.11 network switch to a different channel; yet the ISM band is becoming increasingly crowded with diverse technologies, and hence many 802.11 access points may not find an interference-free channel. This paper presents TIMO, a MIMO design that enables 802.11n to communicate in the presence of high-power cross-technology interference. Unlike existing MIMO designs, however, which require all concurrent transmissions to belong to the same technology, TIMO can exploit MIMO capabilities to decode in the presence of a signal from a different technology, hence enabling diverse technologies to share the same frequency band. We implement a prototype of TIMO in GNURadio-USRP2 and show that it enables 802.11n to communicate in the presence of interference from baby monitors, cordless phones, and microwave ovens, transforming scenarios with a complete loss of connectivity to operational networks.","PeriodicalId":350796,"journal":{"name":"Proceedings of the ACM SIGCOMM 2011 conference","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"197","resultStr":"{\"title\":\"Clearing the RF smog: making 802.11n robust to cross-technology interference\",\"authors\":\"Shyamnath Gollakota, Fadel M. Adib, D. Katabi, S. Seshan\",\"doi\":\"10.1145/2018436.2018456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent studies show that high-power cross-technology interference is becoming a major problem in today's 802.11 networks. Devices like baby monitors and cordless phones can cause a wireless LAN to lose connectivity. The existing approach for dealing with such high-power interferers makes the 802.11 network switch to a different channel; yet the ISM band is becoming increasingly crowded with diverse technologies, and hence many 802.11 access points may not find an interference-free channel. This paper presents TIMO, a MIMO design that enables 802.11n to communicate in the presence of high-power cross-technology interference. Unlike existing MIMO designs, however, which require all concurrent transmissions to belong to the same technology, TIMO can exploit MIMO capabilities to decode in the presence of a signal from a different technology, hence enabling diverse technologies to share the same frequency band. We implement a prototype of TIMO in GNURadio-USRP2 and show that it enables 802.11n to communicate in the presence of interference from baby monitors, cordless phones, and microwave ovens, transforming scenarios with a complete loss of connectivity to operational networks.\",\"PeriodicalId\":350796,\"journal\":{\"name\":\"Proceedings of the ACM SIGCOMM 2011 conference\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"197\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM SIGCOMM 2011 conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2018436.2018456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM SIGCOMM 2011 conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2018436.2018456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Clearing the RF smog: making 802.11n robust to cross-technology interference
Recent studies show that high-power cross-technology interference is becoming a major problem in today's 802.11 networks. Devices like baby monitors and cordless phones can cause a wireless LAN to lose connectivity. The existing approach for dealing with such high-power interferers makes the 802.11 network switch to a different channel; yet the ISM band is becoming increasingly crowded with diverse technologies, and hence many 802.11 access points may not find an interference-free channel. This paper presents TIMO, a MIMO design that enables 802.11n to communicate in the presence of high-power cross-technology interference. Unlike existing MIMO designs, however, which require all concurrent transmissions to belong to the same technology, TIMO can exploit MIMO capabilities to decode in the presence of a signal from a different technology, hence enabling diverse technologies to share the same frequency band. We implement a prototype of TIMO in GNURadio-USRP2 and show that it enables 802.11n to communicate in the presence of interference from baby monitors, cordless phones, and microwave ovens, transforming scenarios with a complete loss of connectivity to operational networks.