多处理器系统中基于容错预留的非周期任务调度策略

Chunhua Yang, Geert Deconinck
{"title":"多处理器系统中基于容错预留的非周期任务调度策略","authors":"Chunhua Yang, Geert Deconinck","doi":"10.1109/EMPDP.2002.994300","DOIUrl":null,"url":null,"abstract":"Periodic and aperiodic tasks co-exist in many real-time systems. The periodic tasks typically arise from sensor data or control loops, while the aperiodic tasks generally arise from arbitrary events. Their time constraints need to be met even in the presence of faults. Considering the unpredictability of aperiodic tasks, this paper proposes a fault-tolerant reservation-based strategy (FTRB) to schedule aperiodic tasks by utilizing the processor time left unused by periodic tasks. The least upper bound of reserved processor time is derived analytically such that all available processor time may be exploited for servicing aperiodic tasks. Any newly arrived aperiodic task is scheduled on the first-fit processor by using an extended dynamic schedulability criterion. A primary/backup approach is used to schedule the primary and backup copy of each task on different processors to tolerate a processor failure. Our analysis and simulation results show that the processors can achieve high utilization and that the on-line implementation of aperiodic task scheduling is feasible.","PeriodicalId":126071,"journal":{"name":"Proceedings 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing","volume":"382 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A fault-tolerant reservation-based strategy for scheduling aperiodic tasks in multiprocessor systems\",\"authors\":\"Chunhua Yang, Geert Deconinck\",\"doi\":\"10.1109/EMPDP.2002.994300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Periodic and aperiodic tasks co-exist in many real-time systems. The periodic tasks typically arise from sensor data or control loops, while the aperiodic tasks generally arise from arbitrary events. Their time constraints need to be met even in the presence of faults. Considering the unpredictability of aperiodic tasks, this paper proposes a fault-tolerant reservation-based strategy (FTRB) to schedule aperiodic tasks by utilizing the processor time left unused by periodic tasks. The least upper bound of reserved processor time is derived analytically such that all available processor time may be exploited for servicing aperiodic tasks. Any newly arrived aperiodic task is scheduled on the first-fit processor by using an extended dynamic schedulability criterion. A primary/backup approach is used to schedule the primary and backup copy of each task on different processors to tolerate a processor failure. Our analysis and simulation results show that the processors can achieve high utilization and that the on-line implementation of aperiodic task scheduling is feasible.\",\"PeriodicalId\":126071,\"journal\":{\"name\":\"Proceedings 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing\",\"volume\":\"382 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMPDP.2002.994300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMPDP.2002.994300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在许多实时系统中,周期性任务和非周期性任务并存。周期性任务通常由传感器数据或控制回路产生,而非周期性任务通常由任意事件产生。即使在存在故障的情况下,也需要满足它们的时间限制。考虑到非周期任务的不可预测性,本文提出了一种基于容错预留的策略,利用周期任务未使用的处理器时间调度非周期任务。解析地推导出保留处理器时间的最小上界,使得所有可用的处理器时间可用于服务非周期性任务。通过使用扩展的动态可调度性准则,将新到达的非周期任务调度到第一拟合处理器上。主/备份方法用于在不同的处理器上调度每个任务的主副本和备份副本,以容忍处理器故障。分析和仿真结果表明,该处理器具有较高的利用率,并且在线实现非周期任务调度是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fault-tolerant reservation-based strategy for scheduling aperiodic tasks in multiprocessor systems
Periodic and aperiodic tasks co-exist in many real-time systems. The periodic tasks typically arise from sensor data or control loops, while the aperiodic tasks generally arise from arbitrary events. Their time constraints need to be met even in the presence of faults. Considering the unpredictability of aperiodic tasks, this paper proposes a fault-tolerant reservation-based strategy (FTRB) to schedule aperiodic tasks by utilizing the processor time left unused by periodic tasks. The least upper bound of reserved processor time is derived analytically such that all available processor time may be exploited for servicing aperiodic tasks. Any newly arrived aperiodic task is scheduled on the first-fit processor by using an extended dynamic schedulability criterion. A primary/backup approach is used to schedule the primary and backup copy of each task on different processors to tolerate a processor failure. Our analysis and simulation results show that the processors can achieve high utilization and that the on-line implementation of aperiodic task scheduling is feasible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信