Michael Stiven Ramirez Campos, Diana C. Rodríguez, A. Orjuela-Cañón
{"title":"耐药结核药物发现过程中的分子化合物建议","authors":"Michael Stiven Ramirez Campos, Diana C. Rodríguez, A. Orjuela-Cañón","doi":"10.1109/ColCACI59285.2023.10225875","DOIUrl":null,"url":null,"abstract":"Tuberculosis is a contagious disease considered as world emergency by the World Health Organization. One of the common prevalent problems are associated to drug-resistant TB, because of unsuccessful treatments of using antibiotics. The use of artificial intelligence algorithms, mainly machine learning (ML) models have allowed to provided more tools for the drug discovery field. For this study, the methodology used was driven to identify new components that may contribute to the inhibition of the inhA protein. Leveraging ML models that learn from data, six regression models were implemented. Best model obtained R2 value of 0.99 and a MSE value of 1.8 e-5.","PeriodicalId":206196,"journal":{"name":"2023 IEEE Colombian Conference on Applications of Computational Intelligence (ColCACI)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Compounds Proposal for Drug-Resistant Tuberculosis in the Drug Discovery Process\",\"authors\":\"Michael Stiven Ramirez Campos, Diana C. Rodríguez, A. Orjuela-Cañón\",\"doi\":\"10.1109/ColCACI59285.2023.10225875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tuberculosis is a contagious disease considered as world emergency by the World Health Organization. One of the common prevalent problems are associated to drug-resistant TB, because of unsuccessful treatments of using antibiotics. The use of artificial intelligence algorithms, mainly machine learning (ML) models have allowed to provided more tools for the drug discovery field. For this study, the methodology used was driven to identify new components that may contribute to the inhibition of the inhA protein. Leveraging ML models that learn from data, six regression models were implemented. Best model obtained R2 value of 0.99 and a MSE value of 1.8 e-5.\",\"PeriodicalId\":206196,\"journal\":{\"name\":\"2023 IEEE Colombian Conference on Applications of Computational Intelligence (ColCACI)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Colombian Conference on Applications of Computational Intelligence (ColCACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ColCACI59285.2023.10225875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Colombian Conference on Applications of Computational Intelligence (ColCACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ColCACI59285.2023.10225875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molecular Compounds Proposal for Drug-Resistant Tuberculosis in the Drug Discovery Process
Tuberculosis is a contagious disease considered as world emergency by the World Health Organization. One of the common prevalent problems are associated to drug-resistant TB, because of unsuccessful treatments of using antibiotics. The use of artificial intelligence algorithms, mainly machine learning (ML) models have allowed to provided more tools for the drug discovery field. For this study, the methodology used was driven to identify new components that may contribute to the inhibition of the inhA protein. Leveraging ML models that learn from data, six regression models were implemented. Best model obtained R2 value of 0.99 and a MSE value of 1.8 e-5.