基于N-Gram的网页类型自动识别方法

Jane E. Mason, M. Shepherd, Jack Duffy
{"title":"基于N-Gram的网页类型自动识别方法","authors":"Jane E. Mason, M. Shepherd, Jack Duffy","doi":"10.1109/HICSS.2009.581","DOIUrl":null,"url":null,"abstract":"The research reported in this paper is the first phase of a larger project on the automatic classification of web pages by their genres, using n-gram representations of the web pages. In this study, the textual content of web pages is used to create feature sets consisting of the most frequent n-grams and their associated frequencies. We present three methods, each of which uses a distance measure to determine the dissimilarity between two feature sets. Each method forms a feature set for every web page in the test set, however the formation of feature sets from the training set differs between methods: we experiment using one feature set per web page, per genre, and a combination of genre-based feature sets supplemented by subgenre feature sets. We present results for a balanced corpus of seven genres (blog, eshop, FAQs, front page, listing, home page, and search page). Initial results are encouraging.","PeriodicalId":211759,"journal":{"name":"2009 42nd Hawaii International Conference on System Sciences","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"An N-Gram Based Approach to Automatically Identifying Web Page Genre\",\"authors\":\"Jane E. Mason, M. Shepherd, Jack Duffy\",\"doi\":\"10.1109/HICSS.2009.581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research reported in this paper is the first phase of a larger project on the automatic classification of web pages by their genres, using n-gram representations of the web pages. In this study, the textual content of web pages is used to create feature sets consisting of the most frequent n-grams and their associated frequencies. We present three methods, each of which uses a distance measure to determine the dissimilarity between two feature sets. Each method forms a feature set for every web page in the test set, however the formation of feature sets from the training set differs between methods: we experiment using one feature set per web page, per genre, and a combination of genre-based feature sets supplemented by subgenre feature sets. We present results for a balanced corpus of seven genres (blog, eshop, FAQs, front page, listing, home page, and search page). Initial results are encouraging.\",\"PeriodicalId\":211759,\"journal\":{\"name\":\"2009 42nd Hawaii International Conference on System Sciences\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 42nd Hawaii International Conference on System Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HICSS.2009.581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 42nd Hawaii International Conference on System Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HICSS.2009.581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

本文报道的研究是一个更大的项目的第一阶段,该项目使用网页的n-gram表示,根据网页的类型对网页进行自动分类。在本研究中,网页的文本内容被用来创建由最频繁的n-gram及其相关频率组成的特征集。我们提出了三种方法,每种方法都使用距离度量来确定两个特征集之间的不相似性。每种方法都为测试集中的每个网页形成一个特征集,但是从训练集中形成的特征集在不同的方法之间是不同的:我们在每个网页、每个类型和基于类型的特征集的组合中使用一个特征集,并辅以子类型特征集。我们为七种类型(博客,商店,常见问题,首页,列表,主页和搜索页面)的平衡语料库提供结果。初步结果令人鼓舞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An N-Gram Based Approach to Automatically Identifying Web Page Genre
The research reported in this paper is the first phase of a larger project on the automatic classification of web pages by their genres, using n-gram representations of the web pages. In this study, the textual content of web pages is used to create feature sets consisting of the most frequent n-grams and their associated frequencies. We present three methods, each of which uses a distance measure to determine the dissimilarity between two feature sets. Each method forms a feature set for every web page in the test set, however the formation of feature sets from the training set differs between methods: we experiment using one feature set per web page, per genre, and a combination of genre-based feature sets supplemented by subgenre feature sets. We present results for a balanced corpus of seven genres (blog, eshop, FAQs, front page, listing, home page, and search page). Initial results are encouraging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信