{"title":"基于最大后验选择和贝叶斯建模的传感器网络数据故障检测","authors":"Kevin Ni, G. Pottie","doi":"10.1145/2240092.2240097","DOIUrl":null,"url":null,"abstract":"Current sensor networks experience many faults that hamper the ability of scientists to draw significant inferences. We develop a method to systematically identify when these faults occur so that proper corrective action can be taken. We propose an adaptable modular framework that can utilize different modeling methods and approaches to identifying trustworthy sensors. We focus on using hierarchical Bayesian space-time (HBST) modeling to model the phenomenon of interest, and use maximum a posteriors selection to identify a set of trustworthy sensors. Compared to an analogous linear autoregressive system, we achieve excellent fault detection when the HBST model accurately represents the phenomenon.","PeriodicalId":263540,"journal":{"name":"ACM Trans. Sens. Networks","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Sensor network data fault detection with maximum a posteriori selection and bayesian modeling\",\"authors\":\"Kevin Ni, G. Pottie\",\"doi\":\"10.1145/2240092.2240097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current sensor networks experience many faults that hamper the ability of scientists to draw significant inferences. We develop a method to systematically identify when these faults occur so that proper corrective action can be taken. We propose an adaptable modular framework that can utilize different modeling methods and approaches to identifying trustworthy sensors. We focus on using hierarchical Bayesian space-time (HBST) modeling to model the phenomenon of interest, and use maximum a posteriors selection to identify a set of trustworthy sensors. Compared to an analogous linear autoregressive system, we achieve excellent fault detection when the HBST model accurately represents the phenomenon.\",\"PeriodicalId\":263540,\"journal\":{\"name\":\"ACM Trans. Sens. Networks\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Sens. Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2240092.2240097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Sens. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2240092.2240097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sensor network data fault detection with maximum a posteriori selection and bayesian modeling
Current sensor networks experience many faults that hamper the ability of scientists to draw significant inferences. We develop a method to systematically identify when these faults occur so that proper corrective action can be taken. We propose an adaptable modular framework that can utilize different modeling methods and approaches to identifying trustworthy sensors. We focus on using hierarchical Bayesian space-time (HBST) modeling to model the phenomenon of interest, and use maximum a posteriors selection to identify a set of trustworthy sensors. Compared to an analogous linear autoregressive system, we achieve excellent fault detection when the HBST model accurately represents the phenomenon.