基于最大后验选择和贝叶斯建模的传感器网络数据故障检测

Kevin Ni, G. Pottie
{"title":"基于最大后验选择和贝叶斯建模的传感器网络数据故障检测","authors":"Kevin Ni, G. Pottie","doi":"10.1145/2240092.2240097","DOIUrl":null,"url":null,"abstract":"Current sensor networks experience many faults that hamper the ability of scientists to draw significant inferences. We develop a method to systematically identify when these faults occur so that proper corrective action can be taken. We propose an adaptable modular framework that can utilize different modeling methods and approaches to identifying trustworthy sensors. We focus on using hierarchical Bayesian space-time (HBST) modeling to model the phenomenon of interest, and use maximum a posteriors selection to identify a set of trustworthy sensors. Compared to an analogous linear autoregressive system, we achieve excellent fault detection when the HBST model accurately represents the phenomenon.","PeriodicalId":263540,"journal":{"name":"ACM Trans. Sens. Networks","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Sensor network data fault detection with maximum a posteriori selection and bayesian modeling\",\"authors\":\"Kevin Ni, G. Pottie\",\"doi\":\"10.1145/2240092.2240097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current sensor networks experience many faults that hamper the ability of scientists to draw significant inferences. We develop a method to systematically identify when these faults occur so that proper corrective action can be taken. We propose an adaptable modular framework that can utilize different modeling methods and approaches to identifying trustworthy sensors. We focus on using hierarchical Bayesian space-time (HBST) modeling to model the phenomenon of interest, and use maximum a posteriors selection to identify a set of trustworthy sensors. Compared to an analogous linear autoregressive system, we achieve excellent fault detection when the HBST model accurately represents the phenomenon.\",\"PeriodicalId\":263540,\"journal\":{\"name\":\"ACM Trans. Sens. Networks\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Sens. Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2240092.2240097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Sens. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2240092.2240097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

当前的传感器网络经历了许多故障,阻碍了科学家得出重要推论的能力。我们开发了一种方法来系统地识别这些故障发生的时间,以便采取适当的纠正措施。我们提出了一个适应性强的模块化框架,可以利用不同的建模方法和方法来识别值得信赖的传感器。我们重点使用层次贝叶斯时空(HBST)建模来建模感兴趣的现象,并使用最大后验选择来识别一组可信的传感器。与类似的线性自回归系统相比,当HBST模型准确地表示故障现象时,我们实现了出色的故障检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensor network data fault detection with maximum a posteriori selection and bayesian modeling
Current sensor networks experience many faults that hamper the ability of scientists to draw significant inferences. We develop a method to systematically identify when these faults occur so that proper corrective action can be taken. We propose an adaptable modular framework that can utilize different modeling methods and approaches to identifying trustworthy sensors. We focus on using hierarchical Bayesian space-time (HBST) modeling to model the phenomenon of interest, and use maximum a posteriors selection to identify a set of trustworthy sensors. Compared to an analogous linear autoregressive system, we achieve excellent fault detection when the HBST model accurately represents the phenomenon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信