基于贝叶斯实验设计的灰盒系统数据驱动特性验证

S. Haesaert, P. V. D. Hof, A. Abate
{"title":"基于贝叶斯实验设计的灰盒系统数据驱动特性验证","authors":"S. Haesaert, P. V. D. Hof, A. Abate","doi":"10.1109/ACC.2015.7170994","DOIUrl":null,"url":null,"abstract":"A measurement-based statistical verification approach is developed for systems with partly unknown dynamics. These grey-box systems are subject to identification experiments which, new in this contribution, enable accepting or rejecting system properties expressed in a linear-time logic. We employ a Bayesian framework for the computation of a confidence level on the properties and for the design of optimal experiments. Applied to dynamical systems, this work enables data-driven verification of partly-known system dynamics with controllable non-determinism (inputs) and noisy output observations. A numerical case study concerning the safety of a dynamical system is used to elucidate this data-driven and model-based verification technique.","PeriodicalId":223665,"journal":{"name":"2015 American Control Conference (ACC)","volume":"376 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Data-driven property verification of grey-box systems by bayesian experiment design\",\"authors\":\"S. Haesaert, P. V. D. Hof, A. Abate\",\"doi\":\"10.1109/ACC.2015.7170994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A measurement-based statistical verification approach is developed for systems with partly unknown dynamics. These grey-box systems are subject to identification experiments which, new in this contribution, enable accepting or rejecting system properties expressed in a linear-time logic. We employ a Bayesian framework for the computation of a confidence level on the properties and for the design of optimal experiments. Applied to dynamical systems, this work enables data-driven verification of partly-known system dynamics with controllable non-determinism (inputs) and noisy output observations. A numerical case study concerning the safety of a dynamical system is used to elucidate this data-driven and model-based verification technique.\",\"PeriodicalId\":223665,\"journal\":{\"name\":\"2015 American Control Conference (ACC)\",\"volume\":\"376 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2015.7170994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2015.7170994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

针对部分动力学未知的系统,提出了一种基于测量的统计验证方法。这些灰盒系统受制于识别实验,在这个贡献中是新的,能够接受或拒绝用线性时间逻辑表示的系统属性。我们采用贝叶斯框架来计算属性的置信水平和设计最佳实验。应用于动态系统,这项工作使数据驱动验证部分已知的系统动力学具有可控的非确定性(输入)和噪声输出观测。以一个动态系统安全性的数值研究为例,说明了这种基于数据驱动和模型的验证技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-driven property verification of grey-box systems by bayesian experiment design
A measurement-based statistical verification approach is developed for systems with partly unknown dynamics. These grey-box systems are subject to identification experiments which, new in this contribution, enable accepting or rejecting system properties expressed in a linear-time logic. We employ a Bayesian framework for the computation of a confidence level on the properties and for the design of optimal experiments. Applied to dynamical systems, this work enables data-driven verification of partly-known system dynamics with controllable non-determinism (inputs) and noisy output observations. A numerical case study concerning the safety of a dynamical system is used to elucidate this data-driven and model-based verification technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信