ANDROID CNN的手语翻译应用程序的建设

R. Alfikri, Mardi Siswo Utomo, Herny Februariyanti, Eko Nurwahyudi
{"title":"ANDROID CNN的手语翻译应用程序的建设","authors":"R. Alfikri, Mardi Siswo Utomo, Herny Februariyanti, Eko Nurwahyudi","doi":"10.33365/jti.v16i2.1752","DOIUrl":null,"url":null,"abstract":"Tunawicara merupakan keadaan dimana seseorang tidak memiliki kemampuan untuk mendengar ataupun berbicara. Karena adanya permasalahan tersebut, individu dengan penyandang tunawicara menggunakan bahasa isyarat sebagai bahasa yang digunakan untuk melakukan komunikasi dengan individu lainnya. Bahasa isyarat adalah bahasa yang menggunakan gerak bibir, tubuh, dan juga tangan untuk mengekspresikan maksud dalam komunikasi. Sebagian besar masyarakat di Indonesia tidak memahami dan enggan belajar mengenai penggunaan bahasa isyarat, sehingga hal tersebut mengakibatkan adanya batasan dalam melakukan komunikasi jika bertemu dengan individu penyandang tunawicara. Penelitian ini memiliki tujuan agar masyarakat umum dapat melakukan komunikasi dengan individu penyandang tunawicara dengan melakukan proses penerjemahan bahasa isyarat dan belajar mengenai penggunaan bahasa isyarat dengan aplikasi penerjemah bahasa isyarat berbasis Android yang dikembangkan oleh peneliti. Aplikasi penerjemah bahasa isyarat dikembangkan pada platform Android, dengan tujuan agar dapat digunakan oleh masyarakat secara luas. Peneliti mengembangkan model Tensorflow Lite sebagai model penerjemah bahasa isyarat, dengan mengimplementasikan metode Convolutional Neural Network (CNN) dan jumlah total datasets bahasa isyarat sebanyak 1820 data. Jenis bahasa isyarat yang digunakan oleh peneliti pada pengembangan model tersebut adalah berjenis American Sign Language (ASL).  Peneliti menggunakan 3 total Epoch ketika melakukan proses training model, diantaranya adalah 100 Epoch, 150 Epoch, dan 200 Epoch. Training model tersebut memiliki hasil akurasi dan Training Loss, dengan hasil akurasi tertinggi didapatkan oleh 200 Epoch. Namun, setelah model penerjemah bahasa isyarat dilakukan deployment pada aplikasi berbasis Android, akurasi turun hingga 73% dengan permasalahan beberapa beberapa bahasa isyarat mengalami salah prediksi. Penerjemahan bahasa isyarat masih dapat dilakukan, walaupun terdapat beberapa bahasa isyarat yang mengalami salah prediksi. Aplikasi penerjemah bahasa isyarat telah dikembangkan oleh peneliti dengan berbagai fitur pendukung yang dapat digunakan oleh users. Beberapa fitur tersebut diantaranya adalah login, register, forgot password, home, translation, dictionary, profile, edit profile, about me, dan yang terakhir adalah bookmarks. Users dapat menggunakan fitur translation untuk melakukan proses penerjemahan bahasa isyarat, dan fitur dictionary untuk belajar menggunakan bahasa isyarat.","PeriodicalId":344455,"journal":{"name":"Jurnal Teknoinfo","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"PEMBANGUNAN APLIKASI PENERJEMAH BAHASA ISYARAT DENGAN METODE CNN BERBASIS ANDROID\",\"authors\":\"R. Alfikri, Mardi Siswo Utomo, Herny Februariyanti, Eko Nurwahyudi\",\"doi\":\"10.33365/jti.v16i2.1752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tunawicara merupakan keadaan dimana seseorang tidak memiliki kemampuan untuk mendengar ataupun berbicara. Karena adanya permasalahan tersebut, individu dengan penyandang tunawicara menggunakan bahasa isyarat sebagai bahasa yang digunakan untuk melakukan komunikasi dengan individu lainnya. Bahasa isyarat adalah bahasa yang menggunakan gerak bibir, tubuh, dan juga tangan untuk mengekspresikan maksud dalam komunikasi. Sebagian besar masyarakat di Indonesia tidak memahami dan enggan belajar mengenai penggunaan bahasa isyarat, sehingga hal tersebut mengakibatkan adanya batasan dalam melakukan komunikasi jika bertemu dengan individu penyandang tunawicara. Penelitian ini memiliki tujuan agar masyarakat umum dapat melakukan komunikasi dengan individu penyandang tunawicara dengan melakukan proses penerjemahan bahasa isyarat dan belajar mengenai penggunaan bahasa isyarat dengan aplikasi penerjemah bahasa isyarat berbasis Android yang dikembangkan oleh peneliti. Aplikasi penerjemah bahasa isyarat dikembangkan pada platform Android, dengan tujuan agar dapat digunakan oleh masyarakat secara luas. Peneliti mengembangkan model Tensorflow Lite sebagai model penerjemah bahasa isyarat, dengan mengimplementasikan metode Convolutional Neural Network (CNN) dan jumlah total datasets bahasa isyarat sebanyak 1820 data. Jenis bahasa isyarat yang digunakan oleh peneliti pada pengembangan model tersebut adalah berjenis American Sign Language (ASL).  Peneliti menggunakan 3 total Epoch ketika melakukan proses training model, diantaranya adalah 100 Epoch, 150 Epoch, dan 200 Epoch. Training model tersebut memiliki hasil akurasi dan Training Loss, dengan hasil akurasi tertinggi didapatkan oleh 200 Epoch. Namun, setelah model penerjemah bahasa isyarat dilakukan deployment pada aplikasi berbasis Android, akurasi turun hingga 73% dengan permasalahan beberapa beberapa bahasa isyarat mengalami salah prediksi. Penerjemahan bahasa isyarat masih dapat dilakukan, walaupun terdapat beberapa bahasa isyarat yang mengalami salah prediksi. Aplikasi penerjemah bahasa isyarat telah dikembangkan oleh peneliti dengan berbagai fitur pendukung yang dapat digunakan oleh users. Beberapa fitur tersebut diantaranya adalah login, register, forgot password, home, translation, dictionary, profile, edit profile, about me, dan yang terakhir adalah bookmarks. Users dapat menggunakan fitur translation untuk melakukan proses penerjemahan bahasa isyarat, dan fitur dictionary untuk belajar menggunakan bahasa isyarat.\",\"PeriodicalId\":344455,\"journal\":{\"name\":\"Jurnal Teknoinfo\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknoinfo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33365/jti.v16i2.1752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknoinfo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33365/jti.v16i2.1752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

无家可归是一个人既不能听也不能说的环境。由于这些问题,无家可归的人使用手语作为一种与他人交流的语言。手语是一种用嘴唇、身体和手来表达交流意图的语言。大多数印尼人不了解手语,也不愿意学习手语,所以如果遇到无家可归的人,交流就会受到限制。这项研究的目的是让公众通过翻译手语的过程和学习研究人员开发的基于Android的手语翻译应用程序来与残疾人交流。在Android平台上开发了手语翻译应用程序,目的是让整个社区都能使用。研究人员开发了Tensorflow Lite模型作为手语翻译模型,采用了反差网络(CNN)和1820数据的总数据数据。该模型开发人员使用的手语类型是一种美国手语(ASL)。研究人员在培训模型中使用了总共3个Epoch,其中100 Epoch, 150 Epoch和200 Epoch。培训模型有精确度,培训损失最高,最高可达200 Epoch。然而,在基于Android的应用程序上部署之后,由于一些手语问题,准确率下降了73%,有些语言的问题出现了错误的预测。尽管有一些手语被误导,手语的翻译仍然是可能的。手语翻译应用程序是由拥有用户可以使用的各种支持功能的研究人员开发的。其中一些功能包括登录、寄存器、忘记密码、home、翻译、字典、简介、编辑资料,最后是书签。用户可以使用翻译功能来进行手语翻译,也可以使用字典来学习手语。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PEMBANGUNAN APLIKASI PENERJEMAH BAHASA ISYARAT DENGAN METODE CNN BERBASIS ANDROID
Tunawicara merupakan keadaan dimana seseorang tidak memiliki kemampuan untuk mendengar ataupun berbicara. Karena adanya permasalahan tersebut, individu dengan penyandang tunawicara menggunakan bahasa isyarat sebagai bahasa yang digunakan untuk melakukan komunikasi dengan individu lainnya. Bahasa isyarat adalah bahasa yang menggunakan gerak bibir, tubuh, dan juga tangan untuk mengekspresikan maksud dalam komunikasi. Sebagian besar masyarakat di Indonesia tidak memahami dan enggan belajar mengenai penggunaan bahasa isyarat, sehingga hal tersebut mengakibatkan adanya batasan dalam melakukan komunikasi jika bertemu dengan individu penyandang tunawicara. Penelitian ini memiliki tujuan agar masyarakat umum dapat melakukan komunikasi dengan individu penyandang tunawicara dengan melakukan proses penerjemahan bahasa isyarat dan belajar mengenai penggunaan bahasa isyarat dengan aplikasi penerjemah bahasa isyarat berbasis Android yang dikembangkan oleh peneliti. Aplikasi penerjemah bahasa isyarat dikembangkan pada platform Android, dengan tujuan agar dapat digunakan oleh masyarakat secara luas. Peneliti mengembangkan model Tensorflow Lite sebagai model penerjemah bahasa isyarat, dengan mengimplementasikan metode Convolutional Neural Network (CNN) dan jumlah total datasets bahasa isyarat sebanyak 1820 data. Jenis bahasa isyarat yang digunakan oleh peneliti pada pengembangan model tersebut adalah berjenis American Sign Language (ASL).  Peneliti menggunakan 3 total Epoch ketika melakukan proses training model, diantaranya adalah 100 Epoch, 150 Epoch, dan 200 Epoch. Training model tersebut memiliki hasil akurasi dan Training Loss, dengan hasil akurasi tertinggi didapatkan oleh 200 Epoch. Namun, setelah model penerjemah bahasa isyarat dilakukan deployment pada aplikasi berbasis Android, akurasi turun hingga 73% dengan permasalahan beberapa beberapa bahasa isyarat mengalami salah prediksi. Penerjemahan bahasa isyarat masih dapat dilakukan, walaupun terdapat beberapa bahasa isyarat yang mengalami salah prediksi. Aplikasi penerjemah bahasa isyarat telah dikembangkan oleh peneliti dengan berbagai fitur pendukung yang dapat digunakan oleh users. Beberapa fitur tersebut diantaranya adalah login, register, forgot password, home, translation, dictionary, profile, edit profile, about me, dan yang terakhir adalah bookmarks. Users dapat menggunakan fitur translation untuk melakukan proses penerjemahan bahasa isyarat, dan fitur dictionary untuk belajar menggunakan bahasa isyarat.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信