基于ga的拍手声特征提取

J. Olajec, R. Jarina, M. Kuba
{"title":"基于ga的拍手声特征提取","authors":"J. Olajec, R. Jarina, M. Kuba","doi":"10.1109/NEUREL.2006.341166","DOIUrl":null,"url":null,"abstract":"Automatically extracting semantic content from audio streams can be helpful in many multimedia applications. In this paper, we introduce a framework for automatic feature subspace selection from a common feature vector. The selected features build a new representation which is better suitable for a given learning task and recognition. In order to solve this problem, we propose the GA-based (genetic algorithm) method to improve the representativeness and robustness of the features generic audio recognition task","PeriodicalId":231606,"journal":{"name":"2006 8th Seminar on Neural Network Applications in Electrical Engineering","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"GA-Based Feature Extraction for Clapping Sound Detection\",\"authors\":\"J. Olajec, R. Jarina, M. Kuba\",\"doi\":\"10.1109/NEUREL.2006.341166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatically extracting semantic content from audio streams can be helpful in many multimedia applications. In this paper, we introduce a framework for automatic feature subspace selection from a common feature vector. The selected features build a new representation which is better suitable for a given learning task and recognition. In order to solve this problem, we propose the GA-based (genetic algorithm) method to improve the representativeness and robustness of the features generic audio recognition task\",\"PeriodicalId\":231606,\"journal\":{\"name\":\"2006 8th Seminar on Neural Network Applications in Electrical Engineering\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 8th Seminar on Neural Network Applications in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2006.341166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 8th Seminar on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2006.341166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

自动从音频流中提取语义内容对许多多媒体应用程序都很有帮助。本文介绍了一种从公共特征向量中自动选择特征子空间的框架。所选择的特征构建了一个新的表示,它更适合给定的学习任务和识别。为了解决这一问题,我们提出了基于遗传算法的方法来提高特征通用音频识别任务的代表性和鲁棒性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GA-Based Feature Extraction for Clapping Sound Detection
Automatically extracting semantic content from audio streams can be helpful in many multimedia applications. In this paper, we introduce a framework for automatic feature subspace selection from a common feature vector. The selected features build a new representation which is better suitable for a given learning task and recognition. In order to solve this problem, we propose the GA-based (genetic algorithm) method to improve the representativeness and robustness of the features generic audio recognition task
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信