基于稀疏表示和动态原子分类的视频质量评估

Zihui Zhang, Zongyao Hu
{"title":"基于稀疏表示和动态原子分类的视频质量评估","authors":"Zihui Zhang, Zongyao Hu","doi":"10.1109/ICCRD51685.2021.9386597","DOIUrl":null,"url":null,"abstract":"Finding that not all dictionary atoms are closely related to degradation in visual signal, we innovatively design a distortion sensitivity guided Dynamic Atom Classification (DAC) strategy to separate distorted signal. Then, we propose a novel DAC-based full-reference video quality assessment (VQA) method. The method includes two parts: spatial quality evaluation and temporal quality evaluation. Spatially, we train a distortion-aware dictionary, get sparse representation of video patches, and dynamically classify activated dictionary atoms. Every frame is separated into difference and basic components, and spatial similarity is aggregated by component similarities. Temporally, we calculate gradient similarity of frame difference to capture motion information. The experimental results indicate the effectiveness of the proposed algorithm compared with state-of-art VQA methods.","PeriodicalId":294200,"journal":{"name":"2021 IEEE 13th International Conference on Computer Research and Development (ICCRD)","volume":"6 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Video Quality Assessment by Sparse Representation and Dynamic Atom Classification\",\"authors\":\"Zihui Zhang, Zongyao Hu\",\"doi\":\"10.1109/ICCRD51685.2021.9386597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finding that not all dictionary atoms are closely related to degradation in visual signal, we innovatively design a distortion sensitivity guided Dynamic Atom Classification (DAC) strategy to separate distorted signal. Then, we propose a novel DAC-based full-reference video quality assessment (VQA) method. The method includes two parts: spatial quality evaluation and temporal quality evaluation. Spatially, we train a distortion-aware dictionary, get sparse representation of video patches, and dynamically classify activated dictionary atoms. Every frame is separated into difference and basic components, and spatial similarity is aggregated by component similarities. Temporally, we calculate gradient similarity of frame difference to capture motion information. The experimental results indicate the effectiveness of the proposed algorithm compared with state-of-art VQA methods.\",\"PeriodicalId\":294200,\"journal\":{\"name\":\"2021 IEEE 13th International Conference on Computer Research and Development (ICCRD)\",\"volume\":\"6 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 13th International Conference on Computer Research and Development (ICCRD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCRD51685.2021.9386597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 13th International Conference on Computer Research and Development (ICCRD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCRD51685.2021.9386597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

发现并非所有字典原子都与视觉信号的退化密切相关,我们创新地设计了一种以失真灵敏度为导向的动态原子分类(DAC)策略来分离失真信号。然后,我们提出了一种新的基于dac的全参考视频质量评估方法。该方法包括空间质量评价和时间质量评价两部分。在空间上,我们训练了一个扭曲感知字典,得到视频补丁的稀疏表示,并对激活的字典原子进行动态分类。将每一帧分解为差分量和基本分量,通过分量相似度聚合空间相似度。在时间上,我们计算帧差的梯度相似度来捕获运动信息。实验结果表明,与现有的VQA方法相比,该算法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video Quality Assessment by Sparse Representation and Dynamic Atom Classification
Finding that not all dictionary atoms are closely related to degradation in visual signal, we innovatively design a distortion sensitivity guided Dynamic Atom Classification (DAC) strategy to separate distorted signal. Then, we propose a novel DAC-based full-reference video quality assessment (VQA) method. The method includes two parts: spatial quality evaluation and temporal quality evaluation. Spatially, we train a distortion-aware dictionary, get sparse representation of video patches, and dynamically classify activated dictionary atoms. Every frame is separated into difference and basic components, and spatial similarity is aggregated by component similarities. Temporally, we calculate gradient similarity of frame difference to capture motion information. The experimental results indicate the effectiveness of the proposed algorithm compared with state-of-art VQA methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信