计算有理系数多项式平方和分解的Macaulay 2包

Helfried Peyrl, P. Parrilo
{"title":"计算有理系数多项式平方和分解的Macaulay 2包","authors":"Helfried Peyrl, P. Parrilo","doi":"10.1145/1277500.1277534","DOIUrl":null,"url":null,"abstract":"In recent years semideffinite programming (SDP) has become the standard technique for computing sum of squares (SOS) decompositions of nonnegative polynomials. Due to the nature of the underlying methods, the solutions are computed numerically, and thus are never exact. In this paper we present a software package for Macaulay 2, which aims at computing an exact SOS decomposition from a numerical solution.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"A Macaulay 2 package for computing sum of squares decompositions of polynomials with rational coefficients\",\"authors\":\"Helfried Peyrl, P. Parrilo\",\"doi\":\"10.1145/1277500.1277534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years semideffinite programming (SDP) has become the standard technique for computing sum of squares (SOS) decompositions of nonnegative polynomials. Due to the nature of the underlying methods, the solutions are computed numerically, and thus are never exact. In this paper we present a software package for Macaulay 2, which aims at computing an exact SOS decomposition from a numerical solution.\",\"PeriodicalId\":308716,\"journal\":{\"name\":\"Symbolic-Numeric Computation\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbolic-Numeric Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1277500.1277534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1277500.1277534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

近年来,半定规划(SDP)已成为求解非负多项式平方和分解的标准方法。由于基本方法的性质,解是数值计算的,因此永远不会精确。在本文中,我们提出了一个麦考利2的软件包,旨在从数值解计算精确的SOS分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Macaulay 2 package for computing sum of squares decompositions of polynomials with rational coefficients
In recent years semideffinite programming (SDP) has become the standard technique for computing sum of squares (SOS) decompositions of nonnegative polynomials. Due to the nature of the underlying methods, the solutions are computed numerically, and thus are never exact. In this paper we present a software package for Macaulay 2, which aims at computing an exact SOS decomposition from a numerical solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信