Vincenzo Cutrona, Gianluca Puleri, Federico Bianchi, M. Palmonari
{"title":"改进表中实体链接的神经软类型约束","authors":"Vincenzo Cutrona, Gianluca Puleri, Federico Bianchi, M. Palmonari","doi":"10.3233/ssw210033","DOIUrl":null,"url":null,"abstract":"Matching tables against Knowledge Graphs is a crucial task in many applications. A widely adopted solution to improve the precision of matching algorithms is to refine the set of candidate entities by their type in the Knowledge Graph. However, it is not rare that a type is missing for a given entity. In this paper, we propose a methodology to improve the refinement phase of matching algorithms based on type prediction and soft constraints. We apply our methodology to state-of-the-art algorithms, showing a performance boost on different datasets.","PeriodicalId":275036,"journal":{"name":"International Conference on Semantic Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"NEST: Neural Soft Type Constraints to Improve Entity Linking in Tables\",\"authors\":\"Vincenzo Cutrona, Gianluca Puleri, Federico Bianchi, M. Palmonari\",\"doi\":\"10.3233/ssw210033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Matching tables against Knowledge Graphs is a crucial task in many applications. A widely adopted solution to improve the precision of matching algorithms is to refine the set of candidate entities by their type in the Knowledge Graph. However, it is not rare that a type is missing for a given entity. In this paper, we propose a methodology to improve the refinement phase of matching algorithms based on type prediction and soft constraints. We apply our methodology to state-of-the-art algorithms, showing a performance boost on different datasets.\",\"PeriodicalId\":275036,\"journal\":{\"name\":\"International Conference on Semantic Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Semantic Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ssw210033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Semantic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ssw210033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
NEST: Neural Soft Type Constraints to Improve Entity Linking in Tables
Matching tables against Knowledge Graphs is a crucial task in many applications. A widely adopted solution to improve the precision of matching algorithms is to refine the set of candidate entities by their type in the Knowledge Graph. However, it is not rare that a type is missing for a given entity. In this paper, we propose a methodology to improve the refinement phase of matching algorithms based on type prediction and soft constraints. We apply our methodology to state-of-the-art algorithms, showing a performance boost on different datasets.