有限状态空间连续时间马尔可夫链(ctmc)的有效瞬态分析:信号处理方法

G. R. Murthy
{"title":"有限状态空间连续时间马尔可夫链(ctmc)的有效瞬态分析:信号处理方法","authors":"G. R. Murthy","doi":"10.1109/CACS.2013.6734099","DOIUrl":null,"url":null,"abstract":"In this research paper, the problem of efficient computation of transient probability distribution of a Continuous Time Markov chain (CTMC) is addressed and a signal processing based approach is proposed. Also CTMCs whose generator matrix is a structured matrix (Toeplitz, Toeplitz-type) are considered and two efficient algorithms for the computation of transient probability distribution are proposed. Numerical results are presented for performance evaluation of CTMC based stochastic models.","PeriodicalId":186492,"journal":{"name":"2013 CACS International Automatic Control Conference (CACS)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Efficient transient analysis of finite state space continuous time Markov chains (CTMCs): Signal processing approach\",\"authors\":\"G. R. Murthy\",\"doi\":\"10.1109/CACS.2013.6734099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research paper, the problem of efficient computation of transient probability distribution of a Continuous Time Markov chain (CTMC) is addressed and a signal processing based approach is proposed. Also CTMCs whose generator matrix is a structured matrix (Toeplitz, Toeplitz-type) are considered and two efficient algorithms for the computation of transient probability distribution are proposed. Numerical results are presented for performance evaluation of CTMC based stochastic models.\",\"PeriodicalId\":186492,\"journal\":{\"name\":\"2013 CACS International Automatic Control Conference (CACS)\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 CACS International Automatic Control Conference (CACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CACS.2013.6734099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 CACS International Automatic Control Conference (CACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACS.2013.6734099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了连续时间马尔可夫链暂态概率分布的高效计算问题,提出了一种基于信号处理的方法。同时考虑了生成矩阵为结构化矩阵(Toeplitz, Toeplitz-type)的ctmc,并提出了两种计算暂态概率分布的有效算法。给出了基于随机模型的CTMC性能评价的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient transient analysis of finite state space continuous time Markov chains (CTMCs): Signal processing approach
In this research paper, the problem of efficient computation of transient probability distribution of a Continuous Time Markov chain (CTMC) is addressed and a signal processing based approach is proposed. Also CTMCs whose generator matrix is a structured matrix (Toeplitz, Toeplitz-type) are considered and two efficient algorithms for the computation of transient probability distribution are proposed. Numerical results are presented for performance evaluation of CTMC based stochastic models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信