分类器在文本无关说话人识别中的应用

N. P. Jawarkar, R. S. Holambe, T. Basu
{"title":"分类器在文本无关说话人识别中的应用","authors":"N. P. Jawarkar, R. S. Holambe, T. Basu","doi":"10.1109/ACES.2014.6808023","DOIUrl":null,"url":null,"abstract":"In this paper we have presented the comparative study of different modelling techniques (classifiers) for the text independent speaker identification. Four classifiers, namely, Gaussian mixture models, Fuzzy min-max neural network, Self organizing map, and Vector Quantization based Probabilistic Neural Network (VQ-PNN) have been used for the study. The database containing speech utterances recorded from forty two speakers in Hindi language was used for experimentation. Mel frequency cepstral coefficients that represent short time spectrum are used as features for identification. The performance of four classifiers is analysed under clean- and noisy-speech environment for different signal to noise ratios. All the four classifiers have almost similar performance for 10 second test speech utterances under clean environment. However, GMM outperforms other three classifiers under noisy test conditions.","PeriodicalId":353124,"journal":{"name":"2014 First International Conference on Automation, Control, Energy and Systems (ACES)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the use of classifiers for text-independent speaker identification\",\"authors\":\"N. P. Jawarkar, R. S. Holambe, T. Basu\",\"doi\":\"10.1109/ACES.2014.6808023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we have presented the comparative study of different modelling techniques (classifiers) for the text independent speaker identification. Four classifiers, namely, Gaussian mixture models, Fuzzy min-max neural network, Self organizing map, and Vector Quantization based Probabilistic Neural Network (VQ-PNN) have been used for the study. The database containing speech utterances recorded from forty two speakers in Hindi language was used for experimentation. Mel frequency cepstral coefficients that represent short time spectrum are used as features for identification. The performance of four classifiers is analysed under clean- and noisy-speech environment for different signal to noise ratios. All the four classifiers have almost similar performance for 10 second test speech utterances under clean environment. However, GMM outperforms other three classifiers under noisy test conditions.\",\"PeriodicalId\":353124,\"journal\":{\"name\":\"2014 First International Conference on Automation, Control, Energy and Systems (ACES)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 First International Conference on Automation, Control, Energy and Systems (ACES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACES.2014.6808023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 First International Conference on Automation, Control, Energy and Systems (ACES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACES.2014.6808023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文对不同建模技术(分类器)在文本独立说话人识别中的应用进行了比较研究。采用高斯混合模型、模糊最小-最大神经网络、自组织映射和基于向量量化的概率神经网络(VQ-PNN)四种分类器进行了研究。实验使用了包含42名印地语说话者的语音记录的数据库。用表示短时间谱的Mel频率倒谱系数作为特征进行识别。分析了四种分类器在清洁和含噪语音环境下不同信噪比下的性能。四种分类器在清洁环境下对10秒测试语音的表现基本一致。然而,GMM在噪声测试条件下优于其他三种分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the use of classifiers for text-independent speaker identification
In this paper we have presented the comparative study of different modelling techniques (classifiers) for the text independent speaker identification. Four classifiers, namely, Gaussian mixture models, Fuzzy min-max neural network, Self organizing map, and Vector Quantization based Probabilistic Neural Network (VQ-PNN) have been used for the study. The database containing speech utterances recorded from forty two speakers in Hindi language was used for experimentation. Mel frequency cepstral coefficients that represent short time spectrum are used as features for identification. The performance of four classifiers is analysed under clean- and noisy-speech environment for different signal to noise ratios. All the four classifiers have almost similar performance for 10 second test speech utterances under clean environment. However, GMM outperforms other three classifiers under noisy test conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信