带样本外目标的参数估计

P. Hansen, E. Dumitrescu
{"title":"带样本外目标的参数估计","authors":"P. Hansen, E. Dumitrescu","doi":"10.2139/ssrn.3178896","DOIUrl":null,"url":null,"abstract":"We study parameter estimation from the sample X, when the objective is to maximize the expected value of a criterion function, Q, for a distinct sample, Y. This is the situation that arises when a model is estimated for the purpose of describing other data than those used for estimation. The motivated for much estimation has this form, with forecasting problems being a prime example. A natural estimator is the innate estimator that maximizes Q(X;\\theta.) wrt. \\theta. While the innate estimator has certain advantages, we show that the asymptotically efficient estimator is defined from a likelihood function in conjunction with Q. The likelihood-based estimator is, however, fragile, as misspecification is harmful in two ways. First, the likelihood-based estimator may be inefficient under misspecification. Second, and more importantly, the likelihood approach requires a parameter transformation that depends on the truth, causing an improper mapping to be used under misspecification. The theoretical results are illustrated with two applications comprising asymmetric loss and multi-step forecasting, respectively.","PeriodicalId":433005,"journal":{"name":"Econometrics: Data Collection & Data Estimation Methodology eJournal","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parameter Estimation With Out-of-Sample Objective\",\"authors\":\"P. Hansen, E. Dumitrescu\",\"doi\":\"10.2139/ssrn.3178896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study parameter estimation from the sample X, when the objective is to maximize the expected value of a criterion function, Q, for a distinct sample, Y. This is the situation that arises when a model is estimated for the purpose of describing other data than those used for estimation. The motivated for much estimation has this form, with forecasting problems being a prime example. A natural estimator is the innate estimator that maximizes Q(X;\\\\theta.) wrt. \\\\theta. While the innate estimator has certain advantages, we show that the asymptotically efficient estimator is defined from a likelihood function in conjunction with Q. The likelihood-based estimator is, however, fragile, as misspecification is harmful in two ways. First, the likelihood-based estimator may be inefficient under misspecification. Second, and more importantly, the likelihood approach requires a parameter transformation that depends on the truth, causing an improper mapping to be used under misspecification. The theoretical results are illustrated with two applications comprising asymmetric loss and multi-step forecasting, respectively.\",\"PeriodicalId\":433005,\"journal\":{\"name\":\"Econometrics: Data Collection & Data Estimation Methodology eJournal\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Data Collection & Data Estimation Methodology eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3178896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Data Collection & Data Estimation Methodology eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3178896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们研究样本X的参数估计,当目标是最大化标准函数Q的期望值时,对于一个不同的样本y。这是当一个模型是为了描述其他数据而不是用于估计的数据而估计时出现的情况。许多评估的动机有这种形式,预测问题是一个主要的例子。自然估计量是使Q(X;\theta.) wrt最大化的固有估计量。\θ。虽然固有估计量具有一定的优势,但我们表明渐近有效估计量是由与q结合的似然函数定义的。然而,基于似然的估计量是脆弱的,因为错误的说明在两个方面是有害的。首先,基于似然的估计器在不规范的情况下可能是低效的。其次,更重要的是,似然方法需要依赖于真值的参数转换,导致在错误说明下使用不正确的映射。理论结果分别以非对称损失和多步预测为例进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter Estimation With Out-of-Sample Objective
We study parameter estimation from the sample X, when the objective is to maximize the expected value of a criterion function, Q, for a distinct sample, Y. This is the situation that arises when a model is estimated for the purpose of describing other data than those used for estimation. The motivated for much estimation has this form, with forecasting problems being a prime example. A natural estimator is the innate estimator that maximizes Q(X;\theta.) wrt. \theta. While the innate estimator has certain advantages, we show that the asymptotically efficient estimator is defined from a likelihood function in conjunction with Q. The likelihood-based estimator is, however, fragile, as misspecification is harmful in two ways. First, the likelihood-based estimator may be inefficient under misspecification. Second, and more importantly, the likelihood approach requires a parameter transformation that depends on the truth, causing an improper mapping to be used under misspecification. The theoretical results are illustrated with two applications comprising asymmetric loss and multi-step forecasting, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信