计算机视觉应用中图像数据集的高效标注

Julia Möhrmann, G. Heidemann
{"title":"计算机视觉应用中图像数据集的高效标注","authors":"Julia Möhrmann, G. Heidemann","doi":"10.1145/2304496.2304498","DOIUrl":null,"url":null,"abstract":"High quality ground truth data sets are crucial for the development of image recognition systems. However, the task of annotating large image data sets manually takes a lot of time and effort. In order to lower the burden for the development of application-specific image recognition systems, we developed an advanced user interface. This interface is especially designed for non-expert users with little-to-no knowledge of computer vision techniques. The interface presents images clustered by similarity and allows for an efficient and simple annotation of large data sets. The integration of overview+detail concepts allows the precise navigation inside large data sets. The interface can be used without prior instructions on the underlying concepts, like self-organizing maps, image features or visualization techniques.","PeriodicalId":196376,"journal":{"name":"International Workshop on Video and Image Ground Truth in Computer Vision Applications","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Efficient annotation of image data sets for computer vision applications\",\"authors\":\"Julia Möhrmann, G. Heidemann\",\"doi\":\"10.1145/2304496.2304498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High quality ground truth data sets are crucial for the development of image recognition systems. However, the task of annotating large image data sets manually takes a lot of time and effort. In order to lower the burden for the development of application-specific image recognition systems, we developed an advanced user interface. This interface is especially designed for non-expert users with little-to-no knowledge of computer vision techniques. The interface presents images clustered by similarity and allows for an efficient and simple annotation of large data sets. The integration of overview+detail concepts allows the precise navigation inside large data sets. The interface can be used without prior instructions on the underlying concepts, like self-organizing maps, image features or visualization techniques.\",\"PeriodicalId\":196376,\"journal\":{\"name\":\"International Workshop on Video and Image Ground Truth in Computer Vision Applications\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Video and Image Ground Truth in Computer Vision Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2304496.2304498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Video and Image Ground Truth in Computer Vision Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2304496.2304498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

高质量的地面真值数据集对于图像识别系统的发展至关重要。然而,手动注释大型图像数据集的任务需要花费大量的时间和精力。为了减轻特定应用图像识别系统的开发负担,我们开发了一个先进的用户界面。这个界面是特别为对计算机视觉技术知之甚少的非专业用户设计的。该界面根据相似性呈现图像,并允许对大型数据集进行有效而简单的注释。概览+细节概念的集成允许在大数据集中进行精确导航。无需事先说明基本概念,如自组织地图、图像特征或可视化技术,即可使用该界面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient annotation of image data sets for computer vision applications
High quality ground truth data sets are crucial for the development of image recognition systems. However, the task of annotating large image data sets manually takes a lot of time and effort. In order to lower the burden for the development of application-specific image recognition systems, we developed an advanced user interface. This interface is especially designed for non-expert users with little-to-no knowledge of computer vision techniques. The interface presents images clustered by similarity and allows for an efficient and simple annotation of large data sets. The integration of overview+detail concepts allows the precise navigation inside large data sets. The interface can be used without prior instructions on the underlying concepts, like self-organizing maps, image features or visualization techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信