Dhrubojyoti Roy, S. Srivastava, Pranshu Jain, Aditya Kusupati, M. Varma, A. Arora
{"title":"用于雷达分类的轻量级、深度rnn","authors":"Dhrubojyoti Roy, S. Srivastava, Pranshu Jain, Aditya Kusupati, M. Varma, A. Arora","doi":"10.1145/3360322.3361000","DOIUrl":null,"url":null,"abstract":"We demonstrate Multi-Scale, Cascaded RNN (MSC-RNN)1, an energy-efficient recurrent neural network for real-time micro-power radar classification. Its two-tier architecture is jointly trained to reject clutter and discriminate displacing sources at different time-scales, with a lighter lower tier running continuously and a heavier upper tier invoked infrequently on an on-demand basis. It offers for single microcontroller devices a better trade-off in accuracy and efficiency, as well as in clutter suppression and detectability, over competitive shallow and deep alternatives.","PeriodicalId":128826,"journal":{"name":"Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation","volume":"422 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Lightweight, Deep RNNs for Radar Classification\",\"authors\":\"Dhrubojyoti Roy, S. Srivastava, Pranshu Jain, Aditya Kusupati, M. Varma, A. Arora\",\"doi\":\"10.1145/3360322.3361000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate Multi-Scale, Cascaded RNN (MSC-RNN)1, an energy-efficient recurrent neural network for real-time micro-power radar classification. Its two-tier architecture is jointly trained to reject clutter and discriminate displacing sources at different time-scales, with a lighter lower tier running continuously and a heavier upper tier invoked infrequently on an on-demand basis. It offers for single microcontroller devices a better trade-off in accuracy and efficiency, as well as in clutter suppression and detectability, over competitive shallow and deep alternatives.\",\"PeriodicalId\":128826,\"journal\":{\"name\":\"Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation\",\"volume\":\"422 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3360322.3361000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3360322.3361000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We demonstrate Multi-Scale, Cascaded RNN (MSC-RNN)1, an energy-efficient recurrent neural network for real-time micro-power radar classification. Its two-tier architecture is jointly trained to reject clutter and discriminate displacing sources at different time-scales, with a lighter lower tier running continuously and a heavier upper tier invoked infrequently on an on-demand basis. It offers for single microcontroller devices a better trade-off in accuracy and efficiency, as well as in clutter suppression and detectability, over competitive shallow and deep alternatives.