一种基于组合方向核的图像重采样方法

A. Nasonov, A. Krylov, Konstantin Chesnakov
{"title":"一种基于组合方向核的图像重采样方法","authors":"A. Nasonov, A. Krylov, Konstantin Chesnakov","doi":"10.1109/EUVIP.2016.7764602","DOIUrl":null,"url":null,"abstract":"A new edge-directional image resampling method is proposed. The method uses a weighted sum of two adaptive 4x4 interpolation kernels to construct high-resolution pixels. The weights are chosen according to the local gradient features for each pixel. The interpolation kernels are learned using pairs of low- and high-resolution images taken from LIVE image database. The method has low complexity and low memory consumption. It outperforms existing fast edge-directional image interpolation methods.","PeriodicalId":136980,"journal":{"name":"2016 6th European Workshop on Visual Information Processing (EUVIP)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An image resampling method using combined directional kernels\",\"authors\":\"A. Nasonov, A. Krylov, Konstantin Chesnakov\",\"doi\":\"10.1109/EUVIP.2016.7764602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new edge-directional image resampling method is proposed. The method uses a weighted sum of two adaptive 4x4 interpolation kernels to construct high-resolution pixels. The weights are chosen according to the local gradient features for each pixel. The interpolation kernels are learned using pairs of low- and high-resolution images taken from LIVE image database. The method has low complexity and low memory consumption. It outperforms existing fast edge-directional image interpolation methods.\",\"PeriodicalId\":136980,\"journal\":{\"name\":\"2016 6th European Workshop on Visual Information Processing (EUVIP)\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th European Workshop on Visual Information Processing (EUVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUVIP.2016.7764602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP.2016.7764602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种新的边缘定向图像重采样方法。该方法使用两个自适应4x4插值核的加权和来构建高分辨率像素。根据每个像素的局部梯度特征选择权重。利用从LIVE图像数据库中获取的低分辨率和高分辨率图像对学习插值核。该方法具有低复杂度和低内存消耗的特点。它优于现有的快速边缘方向图像插值方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An image resampling method using combined directional kernels
A new edge-directional image resampling method is proposed. The method uses a weighted sum of two adaptive 4x4 interpolation kernels to construct high-resolution pixels. The weights are chosen according to the local gradient features for each pixel. The interpolation kernels are learned using pairs of low- and high-resolution images taken from LIVE image database. The method has low complexity and low memory consumption. It outperforms existing fast edge-directional image interpolation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信