基于广义Logistic变换的推荐

Zhuo-Lin Fu, Fan Min, Heng-Ru Zhang
{"title":"基于广义Logistic变换的推荐","authors":"Zhuo-Lin Fu, Fan Min, Heng-Ru Zhang","doi":"10.1109/ICBK.2018.00059","DOIUrl":null,"url":null,"abstract":"Many recommender systems explicitly or implicitly assume that rating data are normally distributed. This assumption is handy, but often does not hold in practice, resulting in system underperformance. In this paper, we design a recommendation algorithm embedding a new distribution model. First, we introduce a generalized logistic transformation and a parameter estimator Minimum Absolute Skewness Estimator (MASE) to obtain generalized-Gaussian distributed data. Second, we propose a new model, namely generalized logit-generalized-normal (GLG-normal) distribution to fit the observed frequency distribution. Finally, we design GLG-N probabilistic matrix factorization (GPMF) recommendation algorithm. Experiments were undertaken on the 3 subsets of Jester. Results show that 1) GLG-normal captures the essence of the frequency distribution, and 2) GPMF is 5% better than PMF in terms of MAE, and significantly outperforms some other schemas.","PeriodicalId":144958,"journal":{"name":"2018 IEEE International Conference on Big Knowledge (ICBK)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recommendation with Generalized Logistic Transformation\",\"authors\":\"Zhuo-Lin Fu, Fan Min, Heng-Ru Zhang\",\"doi\":\"10.1109/ICBK.2018.00059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many recommender systems explicitly or implicitly assume that rating data are normally distributed. This assumption is handy, but often does not hold in practice, resulting in system underperformance. In this paper, we design a recommendation algorithm embedding a new distribution model. First, we introduce a generalized logistic transformation and a parameter estimator Minimum Absolute Skewness Estimator (MASE) to obtain generalized-Gaussian distributed data. Second, we propose a new model, namely generalized logit-generalized-normal (GLG-normal) distribution to fit the observed frequency distribution. Finally, we design GLG-N probabilistic matrix factorization (GPMF) recommendation algorithm. Experiments were undertaken on the 3 subsets of Jester. Results show that 1) GLG-normal captures the essence of the frequency distribution, and 2) GPMF is 5% better than PMF in terms of MAE, and significantly outperforms some other schemas.\",\"PeriodicalId\":144958,\"journal\":{\"name\":\"2018 IEEE International Conference on Big Knowledge (ICBK)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Big Knowledge (ICBK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBK.2018.00059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK.2018.00059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多推荐系统明确或隐含地假设评级数据是正态分布的。这种假设很方便,但在实践中往往不成立,从而导致系统性能不佳。本文设计了一种嵌入新的分布模型的推荐算法。首先,我们引入广义逻辑变换和参数估计最小绝对偏度估计(MASE)来获得广义高斯分布数据。其次,我们提出了一个新的模型,即广义logit-generalized-normal (GLG-normal)分布来拟合观测到的频率分布。最后,设计了GLG-N概率矩阵分解(GPMF)推荐算法。对Jester的三个子集进行了实验。结果表明:1)GLG-normal能够捕捉到频率分布的本质;2)GPMF在MAE方面比PMF高5%,且显著优于其他模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recommendation with Generalized Logistic Transformation
Many recommender systems explicitly or implicitly assume that rating data are normally distributed. This assumption is handy, but often does not hold in practice, resulting in system underperformance. In this paper, we design a recommendation algorithm embedding a new distribution model. First, we introduce a generalized logistic transformation and a parameter estimator Minimum Absolute Skewness Estimator (MASE) to obtain generalized-Gaussian distributed data. Second, we propose a new model, namely generalized logit-generalized-normal (GLG-normal) distribution to fit the observed frequency distribution. Finally, we design GLG-N probabilistic matrix factorization (GPMF) recommendation algorithm. Experiments were undertaken on the 3 subsets of Jester. Results show that 1) GLG-normal captures the essence of the frequency distribution, and 2) GPMF is 5% better than PMF in terms of MAE, and significantly outperforms some other schemas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信