{"title":"完全图上的模不规则标记","authors":"Indah Chairun Nisa, Nurdin Nurdin, Hasmawati Basir","doi":"10.26858/jdm.v10i3.37426","DOIUrl":null,"url":null,"abstract":"Let G be a simple graph of n order. An edge labeling such that the weights of all vertex are different and elements of the set modulo n, are called a modular irregular labeling. The modular irregularity strength of G is a minimum positive integer k such that G have a modular irregular labeling. If the modular irregularity strength is none, then we called the modular irregularity strength of G is infinity. In this article, we determine the modular irregularity strength of complete graphs.","PeriodicalId":123617,"journal":{"name":"Daya Matematis: Jurnal Inovasi Pendidikan Matematika","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modular Irregular Labeling On Complete Graphs\",\"authors\":\"Indah Chairun Nisa, Nurdin Nurdin, Hasmawati Basir\",\"doi\":\"10.26858/jdm.v10i3.37426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a simple graph of n order. An edge labeling such that the weights of all vertex are different and elements of the set modulo n, are called a modular irregular labeling. The modular irregularity strength of G is a minimum positive integer k such that G have a modular irregular labeling. If the modular irregularity strength is none, then we called the modular irregularity strength of G is infinity. In this article, we determine the modular irregularity strength of complete graphs.\",\"PeriodicalId\":123617,\"journal\":{\"name\":\"Daya Matematis: Jurnal Inovasi Pendidikan Matematika\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Daya Matematis: Jurnal Inovasi Pendidikan Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26858/jdm.v10i3.37426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Daya Matematis: Jurnal Inovasi Pendidikan Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26858/jdm.v10i3.37426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let G be a simple graph of n order. An edge labeling such that the weights of all vertex are different and elements of the set modulo n, are called a modular irregular labeling. The modular irregularity strength of G is a minimum positive integer k such that G have a modular irregular labeling. If the modular irregularity strength is none, then we called the modular irregularity strength of G is infinity. In this article, we determine the modular irregularity strength of complete graphs.