完全图上的模不规则标记

Indah Chairun Nisa, Nurdin Nurdin, Hasmawati Basir
{"title":"完全图上的模不规则标记","authors":"Indah Chairun Nisa, Nurdin Nurdin, Hasmawati Basir","doi":"10.26858/jdm.v10i3.37426","DOIUrl":null,"url":null,"abstract":"Let G be a simple graph of n order. An edge labeling such that the weights of all vertex are different and elements of the set modulo n, are called a modular irregular labeling. The modular irregularity strength of G is a minimum positive integer k such that G have a modular irregular labeling. If the modular irregularity strength is none, then we called the modular irregularity strength of G is infinity. In this article, we determine the modular irregularity strength of complete graphs.","PeriodicalId":123617,"journal":{"name":"Daya Matematis: Jurnal Inovasi Pendidikan Matematika","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modular Irregular Labeling On Complete Graphs\",\"authors\":\"Indah Chairun Nisa, Nurdin Nurdin, Hasmawati Basir\",\"doi\":\"10.26858/jdm.v10i3.37426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a simple graph of n order. An edge labeling such that the weights of all vertex are different and elements of the set modulo n, are called a modular irregular labeling. The modular irregularity strength of G is a minimum positive integer k such that G have a modular irregular labeling. If the modular irregularity strength is none, then we called the modular irregularity strength of G is infinity. In this article, we determine the modular irregularity strength of complete graphs.\",\"PeriodicalId\":123617,\"journal\":{\"name\":\"Daya Matematis: Jurnal Inovasi Pendidikan Matematika\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Daya Matematis: Jurnal Inovasi Pendidikan Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26858/jdm.v10i3.37426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Daya Matematis: Jurnal Inovasi Pendidikan Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26858/jdm.v10i3.37426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设G是一个n阶的简单图。当所有顶点的权值不同且该集合的元素模为n时,称为模不规则标记。G的模不规则强度是一个最小正整数k,使得G具有模不规则标号。若模不规则强度为零,则称G的模不规则强度为无穷大。在本文中,我们确定了完全图的模不规则强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modular Irregular Labeling On Complete Graphs
Let G be a simple graph of n order. An edge labeling such that the weights of all vertex are different and elements of the set modulo n, are called a modular irregular labeling. The modular irregularity strength of G is a minimum positive integer k such that G have a modular irregular labeling. If the modular irregularity strength is none, then we called the modular irregularity strength of G is infinity. In this article, we determine the modular irregularity strength of complete graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信