K-1250-6.9/25汽轮机组流道优化设计方法研究

I. Palkov, Sergii Palkov, O. Ishchenko, O. Avdieieva
{"title":"K-1250-6.9/25汽轮机组流道优化设计方法研究","authors":"I. Palkov, Sergii Palkov, O. Ishchenko, O. Avdieieva","doi":"10.20998/2078-774x.2021.01.02","DOIUrl":null,"url":null,"abstract":"The paper considers the main principles that are used to develop the flow paths (FP) of the high-pressure cylinders (HPC), intermediate-pressure cylinders (IPC), and low-pressure cylinders (LPC) for the K-1250-6.9/25 turbine unit. It describes approaches to the numerical experiment when designing flow paths, the advantage of which is lower labor, time and financial costs and higher informativeness compared to the physical experiment on flow paths. When designing the flow paths of high- and intermediate-pressure cylinders (HIPC), the numerical experiment is performed using the three-dimensional viscous-flow method. For this purpose, a three-dimensional model of the blade system in the flow path is built, which consists of a large number of finite volumes (elements) in the shape of hexagons, in each of which the integration of the equations of gas dynamics is performed. When developing LPC, the method of parameterization and analytical profiling of the blade crown sections is used, where the profiles are described by the curves of the fourth and fifth orders with the condition of providing the minimum value of the maximum curvature and monotonicity of variation of the three-dimensional blade geometry along height. This method allows obtaining the optimal profiles of the cross sections of the blades, which correspond to the current flow lines to the fullest extent, and minimizing the profile energy losses when the flow flows around the blades.","PeriodicalId":416126,"journal":{"name":"NTU \"KhPI\" Bulletin: Power and heat engineering processes and equipment","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing the Flow Path For the K-1250-6.9/25 Turbine Unit Using the Optimal Design Methods\",\"authors\":\"I. Palkov, Sergii Palkov, O. Ishchenko, O. Avdieieva\",\"doi\":\"10.20998/2078-774x.2021.01.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper considers the main principles that are used to develop the flow paths (FP) of the high-pressure cylinders (HPC), intermediate-pressure cylinders (IPC), and low-pressure cylinders (LPC) for the K-1250-6.9/25 turbine unit. It describes approaches to the numerical experiment when designing flow paths, the advantage of which is lower labor, time and financial costs and higher informativeness compared to the physical experiment on flow paths. When designing the flow paths of high- and intermediate-pressure cylinders (HIPC), the numerical experiment is performed using the three-dimensional viscous-flow method. For this purpose, a three-dimensional model of the blade system in the flow path is built, which consists of a large number of finite volumes (elements) in the shape of hexagons, in each of which the integration of the equations of gas dynamics is performed. When developing LPC, the method of parameterization and analytical profiling of the blade crown sections is used, where the profiles are described by the curves of the fourth and fifth orders with the condition of providing the minimum value of the maximum curvature and monotonicity of variation of the three-dimensional blade geometry along height. This method allows obtaining the optimal profiles of the cross sections of the blades, which correspond to the current flow lines to the fullest extent, and minimizing the profile energy losses when the flow flows around the blades.\",\"PeriodicalId\":416126,\"journal\":{\"name\":\"NTU \\\"KhPI\\\" Bulletin: Power and heat engineering processes and equipment\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NTU \\\"KhPI\\\" Bulletin: Power and heat engineering processes and equipment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20998/2078-774x.2021.01.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NTU \"KhPI\" Bulletin: Power and heat engineering processes and equipment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20998/2078-774x.2021.01.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了K-1250-6.9/25汽轮机组高压缸(HPC)、中压缸(IPC)和低压缸(LPC)流道(FP)的主要原理。本文介绍了在流道设计中采用数值实验的方法,与流道物理实验相比,数值实验具有更低的人工、时间和财务成本以及更高的信息量。在设计高、中压气缸流道时,采用三维粘流法进行了数值实验。为此,建立了流道内叶片系统的三维模型,该模型由大量六边形的有限体积(单元)组成,并在每个单元中对气体动力学方程进行了积分。在LPC的开发过程中,采用叶片顶截面的参数化和解析型线的方法,在提供最大曲率最小值和叶片三维几何形状沿高度变化单调性的条件下,用四阶和五阶曲线来描述叶片顶截面的型线。该方法可以最大程度地获得与当前流线相对应的叶片横截面的最佳型线,并最大限度地减少气流在叶片周围流动时的型线能量损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developing the Flow Path For the K-1250-6.9/25 Turbine Unit Using the Optimal Design Methods
The paper considers the main principles that are used to develop the flow paths (FP) of the high-pressure cylinders (HPC), intermediate-pressure cylinders (IPC), and low-pressure cylinders (LPC) for the K-1250-6.9/25 turbine unit. It describes approaches to the numerical experiment when designing flow paths, the advantage of which is lower labor, time and financial costs and higher informativeness compared to the physical experiment on flow paths. When designing the flow paths of high- and intermediate-pressure cylinders (HIPC), the numerical experiment is performed using the three-dimensional viscous-flow method. For this purpose, a three-dimensional model of the blade system in the flow path is built, which consists of a large number of finite volumes (elements) in the shape of hexagons, in each of which the integration of the equations of gas dynamics is performed. When developing LPC, the method of parameterization and analytical profiling of the blade crown sections is used, where the profiles are described by the curves of the fourth and fifth orders with the condition of providing the minimum value of the maximum curvature and monotonicity of variation of the three-dimensional blade geometry along height. This method allows obtaining the optimal profiles of the cross sections of the blades, which correspond to the current flow lines to the fullest extent, and minimizing the profile energy losses when the flow flows around the blades.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信