基于隐式Naïve Bays分类器的叶片植物识别系统

Heba F. Eid, A. Hassanien, Tai-hoon Kim
{"title":"基于隐式Naïve Bays分类器的叶片植物识别系统","authors":"Heba F. Eid, A. Hassanien, Tai-hoon Kim","doi":"10.1109/AITS.2015.28","DOIUrl":null,"url":null,"abstract":"Plant identification is vital for the management of plant species. An automated plant identification system is required for the characterization of plant species without requiring the expertise of botanists. This paper presents an efficient and computational model for plant species identification using digital images of leaves. The proposed identification system combines the leaf biometric features, where shape and venation features are used for leaf image classification. 10 combined biometric leaf features are extracted and passed to Hidden naaive bays classifiers to be categorized. Several experiments are conducted and demonstrated on 1907 sample leaves of 32 different plant species taken form Flavia dataset. Where, the proposed plant identification model shows consistently performances of 97% average identification accuracy.","PeriodicalId":196795,"journal":{"name":"2015 4th International Conference on Advanced Information Technology and Sensor Application (AITS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Leaf Plant Identification System Based on Hidden Naïve Bays Classifier\",\"authors\":\"Heba F. Eid, A. Hassanien, Tai-hoon Kim\",\"doi\":\"10.1109/AITS.2015.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plant identification is vital for the management of plant species. An automated plant identification system is required for the characterization of plant species without requiring the expertise of botanists. This paper presents an efficient and computational model for plant species identification using digital images of leaves. The proposed identification system combines the leaf biometric features, where shape and venation features are used for leaf image classification. 10 combined biometric leaf features are extracted and passed to Hidden naaive bays classifiers to be categorized. Several experiments are conducted and demonstrated on 1907 sample leaves of 32 different plant species taken form Flavia dataset. Where, the proposed plant identification model shows consistently performances of 97% average identification accuracy.\",\"PeriodicalId\":196795,\"journal\":{\"name\":\"2015 4th International Conference on Advanced Information Technology and Sensor Application (AITS)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 4th International Conference on Advanced Information Technology and Sensor Application (AITS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AITS.2015.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 4th International Conference on Advanced Information Technology and Sensor Application (AITS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AITS.2015.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

植物鉴定对植物物种管理至关重要。在不需要植物学家专业知识的情况下,需要一个自动植物识别系统来表征植物物种。本文提出了一种利用叶片数字图像进行植物物种识别的高效计算模型。该识别系统结合了叶片生物特征,利用叶片形状和脉状特征对叶片图像进行分类。提取10个组合的生物特征叶片特征,传递给Hidden naive bayes分类器进行分类。本文对黄花植物数据库中32种不同植物的1907个叶片样本进行了实验并进行了论证。其中,所提出的植物识别模型显示出97%的平均识别准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leaf Plant Identification System Based on Hidden Naïve Bays Classifier
Plant identification is vital for the management of plant species. An automated plant identification system is required for the characterization of plant species without requiring the expertise of botanists. This paper presents an efficient and computational model for plant species identification using digital images of leaves. The proposed identification system combines the leaf biometric features, where shape and venation features are used for leaf image classification. 10 combined biometric leaf features are extracted and passed to Hidden naaive bays classifiers to be categorized. Several experiments are conducted and demonstrated on 1907 sample leaves of 32 different plant species taken form Flavia dataset. Where, the proposed plant identification model shows consistently performances of 97% average identification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信