预测半导体制造中离子束调谐的成功

Andreas Laber, M. Gebser, Konstantin Schekotihin, Yao Yang
{"title":"预测半导体制造中离子束调谐的成功","authors":"Andreas Laber, M. Gebser, Konstantin Schekotihin, Yao Yang","doi":"10.1109/ASDAM55965.2022.9966756","DOIUrl":null,"url":null,"abstract":"Advanced Process Control (APC) systems monitor semiconductor manufacturing processes continuously via equipment internal sensors. The logged data enables data-driven predictive maintenance approaches. Integration of APC-derived constraints into scheduling has the potential to improve the overall equipment effectiveness (OEE). Therefore, we introduce a real-world semiconductor manufacturing case study: Ion Implantation equipment accelerates dopants in an electric field onto wafers, to change electrical properties of defined layers. Every recipe change necessitates ion beam tuning, to meet specifications under varying equipment conditions. In order to avoid expensive timeouts of unsuccessful tuning, a prediction model estimates the tuning success and scheduling is (to be) optimized accordingly. Our preliminary results show that more than half of unsuccessful ion beam tuning can be correctly predicted and thus avoided.","PeriodicalId":148302,"journal":{"name":"2022 14th International Conference on Advanced Semiconductor Devices and Microsystems (ASDAM)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Ion Beam Tuning Success in Semiconductor Manufacturing\",\"authors\":\"Andreas Laber, M. Gebser, Konstantin Schekotihin, Yao Yang\",\"doi\":\"10.1109/ASDAM55965.2022.9966756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advanced Process Control (APC) systems monitor semiconductor manufacturing processes continuously via equipment internal sensors. The logged data enables data-driven predictive maintenance approaches. Integration of APC-derived constraints into scheduling has the potential to improve the overall equipment effectiveness (OEE). Therefore, we introduce a real-world semiconductor manufacturing case study: Ion Implantation equipment accelerates dopants in an electric field onto wafers, to change electrical properties of defined layers. Every recipe change necessitates ion beam tuning, to meet specifications under varying equipment conditions. In order to avoid expensive timeouts of unsuccessful tuning, a prediction model estimates the tuning success and scheduling is (to be) optimized accordingly. Our preliminary results show that more than half of unsuccessful ion beam tuning can be correctly predicted and thus avoided.\",\"PeriodicalId\":148302,\"journal\":{\"name\":\"2022 14th International Conference on Advanced Semiconductor Devices and Microsystems (ASDAM)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Advanced Semiconductor Devices and Microsystems (ASDAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASDAM55965.2022.9966756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Advanced Semiconductor Devices and Microsystems (ASDAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASDAM55965.2022.9966756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

先进过程控制(APC)系统通过设备内部传感器连续监控半导体制造过程。记录的数据支持数据驱动的预测性维护方法。将apc衍生的约束整合到调度中有可能提高整体设备效率(OEE)。因此,我们引入了一个现实世界的半导体制造案例研究:离子注入设备在电场中将掺杂剂加速到晶圆上,以改变定义层的电学特性。每次改变配方都需要离子束调谐,以满足不同设备条件下的规格要求。为了避免调优失败导致的昂贵超时,预测模型估计调优成功,并相应地优化调度。我们的初步结果表明,超过一半的不成功的离子束调谐可以正确预测,从而避免。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Ion Beam Tuning Success in Semiconductor Manufacturing
Advanced Process Control (APC) systems monitor semiconductor manufacturing processes continuously via equipment internal sensors. The logged data enables data-driven predictive maintenance approaches. Integration of APC-derived constraints into scheduling has the potential to improve the overall equipment effectiveness (OEE). Therefore, we introduce a real-world semiconductor manufacturing case study: Ion Implantation equipment accelerates dopants in an electric field onto wafers, to change electrical properties of defined layers. Every recipe change necessitates ion beam tuning, to meet specifications under varying equipment conditions. In order to avoid expensive timeouts of unsuccessful tuning, a prediction model estimates the tuning success and scheduling is (to be) optimized accordingly. Our preliminary results show that more than half of unsuccessful ion beam tuning can be correctly predicted and thus avoided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信