模糊图中的度公平连通支配

K. Rani
{"title":"模糊图中的度公平连通支配","authors":"K. Rani","doi":"10.15520/AJCEM.2015.VOL4.ISS3.31.PP37-39","DOIUrl":null,"url":null,"abstract":"Let  be a fuzzy graph. Let  and  be two vertices of . A fuzzy connected dominating set  is to be a fuzzy equitable connected dominating set if for every  there exists a vertex  such that  and  where  denotes degree of vertex  and  denotes the degree of vertex  and . The minimum cardinality of fuzzy equitable connected domination set is denoted by . In this paper we introduce the concept of fuzzy equitable connected dominating set. Also we obtain some interesting results for this new parameter in equitable connected domination in fuzzy graphs.","PeriodicalId":173381,"journal":{"name":"Asian Journal of Current Engineering and Maths","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Degree Equitable Connected Domination in Fuzzy Graphs\",\"authors\":\"K. Rani\",\"doi\":\"10.15520/AJCEM.2015.VOL4.ISS3.31.PP37-39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let  be a fuzzy graph. Let  and  be two vertices of . A fuzzy connected dominating set  is to be a fuzzy equitable connected dominating set if for every  there exists a vertex  such that  and  where  denotes degree of vertex  and  denotes the degree of vertex  and . The minimum cardinality of fuzzy equitable connected domination set is denoted by . In this paper we introduce the concept of fuzzy equitable connected dominating set. Also we obtain some interesting results for this new parameter in equitable connected domination in fuzzy graphs.\",\"PeriodicalId\":173381,\"journal\":{\"name\":\"Asian Journal of Current Engineering and Maths\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Current Engineering and Maths\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15520/AJCEM.2015.VOL4.ISS3.31.PP37-39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Current Engineering and Maths","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15520/AJCEM.2015.VOL4.ISS3.31.PP37-39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

假设是一个模糊图。设和是的两个顶点。一个模糊连通控制集是一个模糊公平连通控制集,如果对于每一个存在这样一个顶点,其中和表示顶点的度,和表示顶点的度。模糊公平连接控制集的最小基数表示为。本文引入了模糊公平连通支配集的概念。在模糊图的公平连通控制中,我们也得到了一些有趣的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Degree Equitable Connected Domination in Fuzzy Graphs
Let  be a fuzzy graph. Let  and  be two vertices of . A fuzzy connected dominating set  is to be a fuzzy equitable connected dominating set if for every  there exists a vertex  such that  and  where  denotes degree of vertex  and  denotes the degree of vertex  and . The minimum cardinality of fuzzy equitable connected domination set is denoted by . In this paper we introduce the concept of fuzzy equitable connected dominating set. Also we obtain some interesting results for this new parameter in equitable connected domination in fuzzy graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信