神经网络设计与训练的全局优化方法

A. Yamazaki, Teresa B Ludermir, M. D. Souto
{"title":"神经网络设计与训练的全局优化方法","authors":"A. Yamazaki, Teresa B Ludermir, M. D. Souto","doi":"10.1109/SBRN.2002.1181455","DOIUrl":null,"url":null,"abstract":"This paper shows results of two approaches for the optimization of neural networks: one uses simulated annealing for optimizing both architectures and weights combined with backpropagation for fine tuning, while the other uses tabu search for the same purpose. Both approaches generate networks with good generalization performance (mean classification error of 1.68% for simulated annealing and 0.64% for tabu search) and low complexity (mean number of connections of 11.15 out of 36 for simulated annealing and 11.62 out of 36 for tabu search) for an odor recognition task in an artificial nose.","PeriodicalId":157186,"journal":{"name":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Global optimization methods for designing and training neural networks\",\"authors\":\"A. Yamazaki, Teresa B Ludermir, M. D. Souto\",\"doi\":\"10.1109/SBRN.2002.1181455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper shows results of two approaches for the optimization of neural networks: one uses simulated annealing for optimizing both architectures and weights combined with backpropagation for fine tuning, while the other uses tabu search for the same purpose. Both approaches generate networks with good generalization performance (mean classification error of 1.68% for simulated annealing and 0.64% for tabu search) and low complexity (mean number of connections of 11.15 out of 36 for simulated annealing and 11.62 out of 36 for tabu search) for an odor recognition task in an artificial nose.\",\"PeriodicalId\":157186,\"journal\":{\"name\":\"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBRN.2002.1181455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2002.1181455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文展示了两种神经网络优化方法的结果:一种方法使用模拟退火来优化架构和权值,并结合反向传播进行微调,而另一种方法使用禁忌搜索来实现相同的目的。这两种方法生成的网络在人工鼻子气味识别任务中具有良好的泛化性能(模拟退火的平均分类误差为1.68%,禁忌搜索的平均分类误差为0.64%)和低复杂性(模拟退火的平均连接数为11.15 / 36,禁忌搜索的平均连接数为11.62 / 36)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global optimization methods for designing and training neural networks
This paper shows results of two approaches for the optimization of neural networks: one uses simulated annealing for optimizing both architectures and weights combined with backpropagation for fine tuning, while the other uses tabu search for the same purpose. Both approaches generate networks with good generalization performance (mean classification error of 1.68% for simulated annealing and 0.64% for tabu search) and low complexity (mean number of connections of 11.15 out of 36 for simulated annealing and 11.62 out of 36 for tabu search) for an odor recognition task in an artificial nose.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信