虚拟机布局策略研究

Ji-Pu Gao, Gaoming Tang
{"title":"虚拟机布局策略研究","authors":"Ji-Pu Gao, Gaoming Tang","doi":"10.1109/CyberC.2013.57","DOIUrl":null,"url":null,"abstract":"With the emergence of cloud computing, users begin to have more abstract concept for the physical machine. IaaS providers prohibits users request specify the physical machine to virtual machine resources. Users know nothing about underlying infrastructure resources. The data center carry out virtual machine placement decision-making. In this paper, we use particle swarm optimization theory to guide the placement of virtual machines in the data center resources modeling and analysis. According to user needs and current physical server load state, the algorithm quantifies each physical machine and the virtual machine's CPU uses, memory uses, and storage uses. By using multi-objective particle swarm optimization algorithm, the placement of virtual machines based on the physical server resource utilization and the number of virtual machine migration. Simulation results show that the algorithm can effectively improve the minimum number of virtual machine migration resource utilization.","PeriodicalId":133756,"journal":{"name":"2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Virtual Machine Placement Strategy Research\",\"authors\":\"Ji-Pu Gao, Gaoming Tang\",\"doi\":\"10.1109/CyberC.2013.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the emergence of cloud computing, users begin to have more abstract concept for the physical machine. IaaS providers prohibits users request specify the physical machine to virtual machine resources. Users know nothing about underlying infrastructure resources. The data center carry out virtual machine placement decision-making. In this paper, we use particle swarm optimization theory to guide the placement of virtual machines in the data center resources modeling and analysis. According to user needs and current physical server load state, the algorithm quantifies each physical machine and the virtual machine's CPU uses, memory uses, and storage uses. By using multi-objective particle swarm optimization algorithm, the placement of virtual machines based on the physical server resource utilization and the number of virtual machine migration. Simulation results show that the algorithm can effectively improve the minimum number of virtual machine migration resource utilization.\",\"PeriodicalId\":133756,\"journal\":{\"name\":\"2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CyberC.2013.57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberC.2013.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

随着云计算的出现,用户开始对物理机器有更抽象的概念。IaaS提供商禁止用户请求指定物理机到虚拟机的资源。用户对底层基础设施资源一无所知。数据中心进行虚拟机布局决策。本文利用粒子群优化理论指导虚拟机的布局,对数据中心资源进行建模和分析。该算法根据用户需求和当前物理服务器负载状态,量化每台物理机和虚拟机的CPU、内存和存储使用情况。采用多目标粒子群优化算法,根据物理服务器的资源利用率和虚拟机的数量来迁移虚拟机的位置。仿真结果表明,该算法能有效提高最小虚拟机迁移数量的资源利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Virtual Machine Placement Strategy Research
With the emergence of cloud computing, users begin to have more abstract concept for the physical machine. IaaS providers prohibits users request specify the physical machine to virtual machine resources. Users know nothing about underlying infrastructure resources. The data center carry out virtual machine placement decision-making. In this paper, we use particle swarm optimization theory to guide the placement of virtual machines in the data center resources modeling and analysis. According to user needs and current physical server load state, the algorithm quantifies each physical machine and the virtual machine's CPU uses, memory uses, and storage uses. By using multi-objective particle swarm optimization algorithm, the placement of virtual machines based on the physical server resource utilization and the number of virtual machine migration. Simulation results show that the algorithm can effectively improve the minimum number of virtual machine migration resource utilization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信