H. Osten, A. Laha, E. Bugiel, D. Schwendt, A. Fissel
{"title":"外延氧化镧基栅极电介质的生长","authors":"H. Osten, A. Laha, E. Bugiel, D. Schwendt, A. Fissel","doi":"10.1109/ICSCS.2009.5414212","DOIUrl":null,"url":null,"abstract":"Many materials systems are currently under consideration as potential replacements for SiO2 as the gate dielectric material for sub-0.1 µm CMOS technology. We present results for crystalline gadolinium oxides on silicon in the cubic bixbyite structure grown by solid source molecular beam epitaxy. On Si(100), crystalline Gd2O3 grows usually as (110)-oriented domains, with two orthogonal in-plane orientations. Layers grown under best vacuum conditions often exhibit poor dielectric properties due to the formation of crystalline interfacial silicide inclusions. Additional oxygen supply during growth improves the dielectric properties significantly. Layers grown by an optimized MBE process display a sufficiently high-K value to achieve equivalent oxide thickness values ≪ 1 nm, combined with ultra-low leakage current densities, good reliability, and high electrical breakdown voltage. A variety of MOS capacitors and field effect transistors has been fabricated based on these layers. Efficient manipulation of Si(100) 4° miscut substrate surfaces can lead to single domain epitaxial Gd2O3 layer. Such epi-Gd2O3 layers exhibited significant lower leakage currents compared to the commonly obtained epitaxial layers with two orthogonal domains. For capacitance equivalent thicknesses below 1 nm, this differences disappear, indicating that for ultrathin layers direct tunneling becomes dominating.","PeriodicalId":126072,"journal":{"name":"2009 3rd International Conference on Signals, Circuits and Systems (SCS)","volume":"2021 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Growth of epitaxial lanthanide oxide based gate dielectrics\",\"authors\":\"H. Osten, A. Laha, E. Bugiel, D. Schwendt, A. Fissel\",\"doi\":\"10.1109/ICSCS.2009.5414212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many materials systems are currently under consideration as potential replacements for SiO2 as the gate dielectric material for sub-0.1 µm CMOS technology. We present results for crystalline gadolinium oxides on silicon in the cubic bixbyite structure grown by solid source molecular beam epitaxy. On Si(100), crystalline Gd2O3 grows usually as (110)-oriented domains, with two orthogonal in-plane orientations. Layers grown under best vacuum conditions often exhibit poor dielectric properties due to the formation of crystalline interfacial silicide inclusions. Additional oxygen supply during growth improves the dielectric properties significantly. Layers grown by an optimized MBE process display a sufficiently high-K value to achieve equivalent oxide thickness values ≪ 1 nm, combined with ultra-low leakage current densities, good reliability, and high electrical breakdown voltage. A variety of MOS capacitors and field effect transistors has been fabricated based on these layers. Efficient manipulation of Si(100) 4° miscut substrate surfaces can lead to single domain epitaxial Gd2O3 layer. Such epi-Gd2O3 layers exhibited significant lower leakage currents compared to the commonly obtained epitaxial layers with two orthogonal domains. For capacitance equivalent thicknesses below 1 nm, this differences disappear, indicating that for ultrathin layers direct tunneling becomes dominating.\",\"PeriodicalId\":126072,\"journal\":{\"name\":\"2009 3rd International Conference on Signals, Circuits and Systems (SCS)\",\"volume\":\"2021 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 3rd International Conference on Signals, Circuits and Systems (SCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCS.2009.5414212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 3rd International Conference on Signals, Circuits and Systems (SCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCS.2009.5414212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Growth of epitaxial lanthanide oxide based gate dielectrics
Many materials systems are currently under consideration as potential replacements for SiO2 as the gate dielectric material for sub-0.1 µm CMOS technology. We present results for crystalline gadolinium oxides on silicon in the cubic bixbyite structure grown by solid source molecular beam epitaxy. On Si(100), crystalline Gd2O3 grows usually as (110)-oriented domains, with two orthogonal in-plane orientations. Layers grown under best vacuum conditions often exhibit poor dielectric properties due to the formation of crystalline interfacial silicide inclusions. Additional oxygen supply during growth improves the dielectric properties significantly. Layers grown by an optimized MBE process display a sufficiently high-K value to achieve equivalent oxide thickness values ≪ 1 nm, combined with ultra-low leakage current densities, good reliability, and high electrical breakdown voltage. A variety of MOS capacitors and field effect transistors has been fabricated based on these layers. Efficient manipulation of Si(100) 4° miscut substrate surfaces can lead to single domain epitaxial Gd2O3 layer. Such epi-Gd2O3 layers exhibited significant lower leakage currents compared to the commonly obtained epitaxial layers with two orthogonal domains. For capacitance equivalent thicknesses below 1 nm, this differences disappear, indicating that for ultrathin layers direct tunneling becomes dominating.