机器学习在自适应系统中的应用

Omid Gheibi, Danny Weyns, Federico Quin
{"title":"机器学习在自适应系统中的应用","authors":"Omid Gheibi, Danny Weyns, Federico Quin","doi":"10.1145/3469440","DOIUrl":null,"url":null,"abstract":"Recently, we have been witnessing a rapid increase in the use of machine learning techniques in self-adaptive systems. Machine learning has been used for a variety of reasons, ranging from learning a model of the environment of a system during operation to filtering large sets of possible configurations before analyzing them. While a body of work on the use of machine learning in self-adaptive systems exists, there is currently no systematic overview of this area. Such an overview is important for researchers to understand the state of the art and direct future research efforts. This article reports the results of a systematic literature review that aims at providing such an overview. We focus on self-adaptive systems that are based on a traditional Monitor-Analyze-Plan-Execute (MAPE)-based feedback loop. The research questions are centered on the problems that motivate the use of machine learning in self-adaptive systems, the key engineering aspects of learning in self-adaptation, and open challenges in this area. The search resulted in 6,709 papers, of which 109 were retained for data collection. Analysis of the collected data shows that machine learning is mostly used for updating adaptation rules and policies to improve system qualities, and managing resources to better balance qualities and resources. These problems are primarily solved using supervised and interactive learning with classification, regression, and reinforcement learning as the dominant methods. Surprisingly, unsupervised learning that naturally fits automation is only applied in a small number of studies. Key open challenges in this area include the performance of learning, managing the effects of learning, and dealing with more complex types of goals. From the insights derived from this systematic literature review, we outline an initial design process for applying machine learning in self-adaptive systems that are based on MAPE feedback loops.","PeriodicalId":377078,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems (TAAS)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Applying Machine Learning in Self-adaptive Systems\",\"authors\":\"Omid Gheibi, Danny Weyns, Federico Quin\",\"doi\":\"10.1145/3469440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, we have been witnessing a rapid increase in the use of machine learning techniques in self-adaptive systems. Machine learning has been used for a variety of reasons, ranging from learning a model of the environment of a system during operation to filtering large sets of possible configurations before analyzing them. While a body of work on the use of machine learning in self-adaptive systems exists, there is currently no systematic overview of this area. Such an overview is important for researchers to understand the state of the art and direct future research efforts. This article reports the results of a systematic literature review that aims at providing such an overview. We focus on self-adaptive systems that are based on a traditional Monitor-Analyze-Plan-Execute (MAPE)-based feedback loop. The research questions are centered on the problems that motivate the use of machine learning in self-adaptive systems, the key engineering aspects of learning in self-adaptation, and open challenges in this area. The search resulted in 6,709 papers, of which 109 were retained for data collection. Analysis of the collected data shows that machine learning is mostly used for updating adaptation rules and policies to improve system qualities, and managing resources to better balance qualities and resources. These problems are primarily solved using supervised and interactive learning with classification, regression, and reinforcement learning as the dominant methods. Surprisingly, unsupervised learning that naturally fits automation is only applied in a small number of studies. Key open challenges in this area include the performance of learning, managing the effects of learning, and dealing with more complex types of goals. From the insights derived from this systematic literature review, we outline an initial design process for applying machine learning in self-adaptive systems that are based on MAPE feedback loops.\",\"PeriodicalId\":377078,\"journal\":{\"name\":\"ACM Transactions on Autonomous and Adaptive Systems (TAAS)\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Autonomous and Adaptive Systems (TAAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems (TAAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

最近,我们目睹了在自适应系统中使用机器学习技术的快速增长。机器学习被用于各种各样的原因,从在操作过程中学习系统环境的模型到在分析它们之前过滤大量可能的配置。虽然存在大量关于在自适应系统中使用机器学习的工作,但目前还没有对这一领域的系统概述。这样的概述对于研究人员了解最新技术和指导未来的研究工作非常重要。这篇文章报告了一个系统的文献综述的结果,旨在提供这样一个概述。我们关注的是基于传统的监测-分析-计划-执行(MAPE)反馈回路的自适应系统。研究问题集中在激励在自适应系统中使用机器学习的问题,自适应学习的关键工程方面,以及该领域的开放挑战。检索结果为6709篇论文,其中109篇被保留用于数据收集。对收集数据的分析表明,机器学习主要用于更新适应规则和策略以提高系统质量,以及管理资源以更好地平衡质量和资源。这些问题的解决主要是使用以分类、回归和强化学习为主要方法的监督式和交互式学习。令人惊讶的是,自然适合自动化的无监督学习只应用于少数研究。这一领域的关键挑战包括学习表现、管理学习效果以及处理更复杂类型的目标。根据系统文献综述的见解,我们概述了在基于MAPE反馈回路的自适应系统中应用机器学习的初始设计过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying Machine Learning in Self-adaptive Systems
Recently, we have been witnessing a rapid increase in the use of machine learning techniques in self-adaptive systems. Machine learning has been used for a variety of reasons, ranging from learning a model of the environment of a system during operation to filtering large sets of possible configurations before analyzing them. While a body of work on the use of machine learning in self-adaptive systems exists, there is currently no systematic overview of this area. Such an overview is important for researchers to understand the state of the art and direct future research efforts. This article reports the results of a systematic literature review that aims at providing such an overview. We focus on self-adaptive systems that are based on a traditional Monitor-Analyze-Plan-Execute (MAPE)-based feedback loop. The research questions are centered on the problems that motivate the use of machine learning in self-adaptive systems, the key engineering aspects of learning in self-adaptation, and open challenges in this area. The search resulted in 6,709 papers, of which 109 were retained for data collection. Analysis of the collected data shows that machine learning is mostly used for updating adaptation rules and policies to improve system qualities, and managing resources to better balance qualities and resources. These problems are primarily solved using supervised and interactive learning with classification, regression, and reinforcement learning as the dominant methods. Surprisingly, unsupervised learning that naturally fits automation is only applied in a small number of studies. Key open challenges in this area include the performance of learning, managing the effects of learning, and dealing with more complex types of goals. From the insights derived from this systematic literature review, we outline an initial design process for applying machine learning in self-adaptive systems that are based on MAPE feedback loops.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信