Vahid Moshkelgosha, Hamed Behzadi-Khormouji, M. Yazdian-Dehkordi
{"title":"基于内容的对象分类从粗到精的参数调优","authors":"Vahid Moshkelgosha, Hamed Behzadi-Khormouji, M. Yazdian-Dehkordi","doi":"10.1109/PRIA.2017.7983038","DOIUrl":null,"url":null,"abstract":"Object categorization is an interesting application in computer vision. To develop an efficient system for this purpose, finding an appropriate classifier in conjunction with a suitable feature is essential. Most classifiers and features have one or more parameters to be tuned through cross validation. In this paper, we examined a number of classifiers with several feature descriptors and advise an efficient hybrid feature descriptor for object categorization. Besides, we propose a coarse-to-fine parameter tuning method to avoid exhaustive search within various hyper-parameter of the classifiers. The experimental results provided on a subset of COREL dataset shows the efficiency of the advised hybrid feature and the proposed tuning parameters.","PeriodicalId":336066,"journal":{"name":"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Coarse-to-fine parameter tuning for content-based object categorization\",\"authors\":\"Vahid Moshkelgosha, Hamed Behzadi-Khormouji, M. Yazdian-Dehkordi\",\"doi\":\"10.1109/PRIA.2017.7983038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object categorization is an interesting application in computer vision. To develop an efficient system for this purpose, finding an appropriate classifier in conjunction with a suitable feature is essential. Most classifiers and features have one or more parameters to be tuned through cross validation. In this paper, we examined a number of classifiers with several feature descriptors and advise an efficient hybrid feature descriptor for object categorization. Besides, we propose a coarse-to-fine parameter tuning method to avoid exhaustive search within various hyper-parameter of the classifiers. The experimental results provided on a subset of COREL dataset shows the efficiency of the advised hybrid feature and the proposed tuning parameters.\",\"PeriodicalId\":336066,\"journal\":{\"name\":\"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRIA.2017.7983038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRIA.2017.7983038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coarse-to-fine parameter tuning for content-based object categorization
Object categorization is an interesting application in computer vision. To develop an efficient system for this purpose, finding an appropriate classifier in conjunction with a suitable feature is essential. Most classifiers and features have one or more parameters to be tuned through cross validation. In this paper, we examined a number of classifiers with several feature descriptors and advise an efficient hybrid feature descriptor for object categorization. Besides, we propose a coarse-to-fine parameter tuning method to avoid exhaustive search within various hyper-parameter of the classifiers. The experimental results provided on a subset of COREL dataset shows the efficiency of the advised hybrid feature and the proposed tuning parameters.