基于内容的对象分类从粗到精的参数调优

Vahid Moshkelgosha, Hamed Behzadi-Khormouji, M. Yazdian-Dehkordi
{"title":"基于内容的对象分类从粗到精的参数调优","authors":"Vahid Moshkelgosha, Hamed Behzadi-Khormouji, M. Yazdian-Dehkordi","doi":"10.1109/PRIA.2017.7983038","DOIUrl":null,"url":null,"abstract":"Object categorization is an interesting application in computer vision. To develop an efficient system for this purpose, finding an appropriate classifier in conjunction with a suitable feature is essential. Most classifiers and features have one or more parameters to be tuned through cross validation. In this paper, we examined a number of classifiers with several feature descriptors and advise an efficient hybrid feature descriptor for object categorization. Besides, we propose a coarse-to-fine parameter tuning method to avoid exhaustive search within various hyper-parameter of the classifiers. The experimental results provided on a subset of COREL dataset shows the efficiency of the advised hybrid feature and the proposed tuning parameters.","PeriodicalId":336066,"journal":{"name":"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Coarse-to-fine parameter tuning for content-based object categorization\",\"authors\":\"Vahid Moshkelgosha, Hamed Behzadi-Khormouji, M. Yazdian-Dehkordi\",\"doi\":\"10.1109/PRIA.2017.7983038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object categorization is an interesting application in computer vision. To develop an efficient system for this purpose, finding an appropriate classifier in conjunction with a suitable feature is essential. Most classifiers and features have one or more parameters to be tuned through cross validation. In this paper, we examined a number of classifiers with several feature descriptors and advise an efficient hybrid feature descriptor for object categorization. Besides, we propose a coarse-to-fine parameter tuning method to avoid exhaustive search within various hyper-parameter of the classifiers. The experimental results provided on a subset of COREL dataset shows the efficiency of the advised hybrid feature and the proposed tuning parameters.\",\"PeriodicalId\":336066,\"journal\":{\"name\":\"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRIA.2017.7983038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRIA.2017.7983038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对象分类是计算机视觉中一个有趣的应用。为了为此目的开发一个有效的系统,找到一个合适的分类器并结合合适的特征是至关重要的。大多数分类器和特征都有一个或多个参数需要通过交叉验证进行调优。在本文中,我们研究了一些具有几个特征描述符的分类器,并提出了一个有效的混合特征描述符用于对象分类。此外,我们还提出了一种从粗到精的参数调整方法,以避免在分类器的各种超参数中进行穷举搜索。在COREL数据集的一个子集上提供的实验结果表明,所建议的混合特征和所提出的调优参数是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coarse-to-fine parameter tuning for content-based object categorization
Object categorization is an interesting application in computer vision. To develop an efficient system for this purpose, finding an appropriate classifier in conjunction with a suitable feature is essential. Most classifiers and features have one or more parameters to be tuned through cross validation. In this paper, we examined a number of classifiers with several feature descriptors and advise an efficient hybrid feature descriptor for object categorization. Besides, we propose a coarse-to-fine parameter tuning method to avoid exhaustive search within various hyper-parameter of the classifiers. The experimental results provided on a subset of COREL dataset shows the efficiency of the advised hybrid feature and the proposed tuning parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信