{"title":"增强异构电路分析程序的性能可移植性","authors":"Tsung-Wei Huang","doi":"10.1109/HPEC55821.2022.9926380","DOIUrl":null,"url":null,"abstract":"Recently, CPU-GPU heterogeneous parallelism has brought transformational performance milestones to static timing analysis (STA) algorithms. As the computing ecosystem continues to proliferate, performance portability has emerged as a new challenge when deploying the result to diverse heterogeneous computing platforms. Specifically, the optimal code written on a CPU-GPU architecture may not be optimal for other CPU-GPU architectures, due to various performance, interoperability, and availability constraints. As a result, we introduce in this paper a learning-based framework to enhance the performance portability of a GPU-accelerated STA program. We parameterize important performance parameters and leverage a neural network model to adapt performance optimization to any given computing platforms. We have demonstrated the effectiveness of our framework in real STA applications.","PeriodicalId":200071,"journal":{"name":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Performance Portability of Heterogeneous Circuit Analysis Programs\",\"authors\":\"Tsung-Wei Huang\",\"doi\":\"10.1109/HPEC55821.2022.9926380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, CPU-GPU heterogeneous parallelism has brought transformational performance milestones to static timing analysis (STA) algorithms. As the computing ecosystem continues to proliferate, performance portability has emerged as a new challenge when deploying the result to diverse heterogeneous computing platforms. Specifically, the optimal code written on a CPU-GPU architecture may not be optimal for other CPU-GPU architectures, due to various performance, interoperability, and availability constraints. As a result, we introduce in this paper a learning-based framework to enhance the performance portability of a GPU-accelerated STA program. We parameterize important performance parameters and leverage a neural network model to adapt performance optimization to any given computing platforms. We have demonstrated the effectiveness of our framework in real STA applications.\",\"PeriodicalId\":200071,\"journal\":{\"name\":\"2022 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC55821.2022.9926380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC55821.2022.9926380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing the Performance Portability of Heterogeneous Circuit Analysis Programs
Recently, CPU-GPU heterogeneous parallelism has brought transformational performance milestones to static timing analysis (STA) algorithms. As the computing ecosystem continues to proliferate, performance portability has emerged as a new challenge when deploying the result to diverse heterogeneous computing platforms. Specifically, the optimal code written on a CPU-GPU architecture may not be optimal for other CPU-GPU architectures, due to various performance, interoperability, and availability constraints. As a result, we introduce in this paper a learning-based framework to enhance the performance portability of a GPU-accelerated STA program. We parameterize important performance parameters and leverage a neural network model to adapt performance optimization to any given computing platforms. We have demonstrated the effectiveness of our framework in real STA applications.