退化情况下大型多边形裁剪的高效PRAM和实用GPU算法

M. K. B. Ashan, S. Puri, S. Prasad
{"title":"退化情况下大型多边形裁剪的高效PRAM和实用GPU算法","authors":"M. K. B. Ashan, S. Puri, S. Prasad","doi":"10.1109/CCGrid57682.2023.00060","DOIUrl":null,"url":null,"abstract":"Polygonal geometric operations are fundamental in domains such as Computer Graphics, Computer-Aided Design, and Geographic Information Systems. Handling degenerate cases in such operations is important when real-world spatial data are used. The popular Greiner-Hormann (GH) clipping algorithm does not handle such cases properly without perturbing vertices leading to inaccuracies and ambiguities. In this work, we parallelize the $O$(n2)-time general polygon clipping algorithm by Foster et al., which can handle degenerate cases without perturbation. Our CREW PRAM algorithm can perform clipping in O (log n) time using $n$ + $k$ number of processors with simple polygons, where $n$ is the number of input edges and $k$ is the number of edge intersections. For efficient GPU implementation, we employ three effective filters which have not been used in prior work on polygon clipping: 1) Common-minimum-bounding-rectangle filter, 2) Count-based filter, and 3) Line-segment-minimum-bounding-rectangle filter. They drastically reduce O($n$2) candidate edge pairs comparisons by 80% - 99%, leading to significantly faster parallel execution. In our experiments, C++ CUDA-based implementation yields up to 40X speedup over real-world datasets, processing two polygons with a total of 174K vertices on an Nvidia Quadro RTX 5000 GPU compared to the sequential Foster's algorithm running on an Intel Xeon Silver 4210R CPU.","PeriodicalId":363806,"journal":{"name":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)","volume":"366 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient PRAM and Practical GPU Algorithms for Large Polygon Clipping with Degenerate Cases\",\"authors\":\"M. K. B. Ashan, S. Puri, S. Prasad\",\"doi\":\"10.1109/CCGrid57682.2023.00060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polygonal geometric operations are fundamental in domains such as Computer Graphics, Computer-Aided Design, and Geographic Information Systems. Handling degenerate cases in such operations is important when real-world spatial data are used. The popular Greiner-Hormann (GH) clipping algorithm does not handle such cases properly without perturbing vertices leading to inaccuracies and ambiguities. In this work, we parallelize the $O$(n2)-time general polygon clipping algorithm by Foster et al., which can handle degenerate cases without perturbation. Our CREW PRAM algorithm can perform clipping in O (log n) time using $n$ + $k$ number of processors with simple polygons, where $n$ is the number of input edges and $k$ is the number of edge intersections. For efficient GPU implementation, we employ three effective filters which have not been used in prior work on polygon clipping: 1) Common-minimum-bounding-rectangle filter, 2) Count-based filter, and 3) Line-segment-minimum-bounding-rectangle filter. They drastically reduce O($n$2) candidate edge pairs comparisons by 80% - 99%, leading to significantly faster parallel execution. In our experiments, C++ CUDA-based implementation yields up to 40X speedup over real-world datasets, processing two polygons with a total of 174K vertices on an Nvidia Quadro RTX 5000 GPU compared to the sequential Foster's algorithm running on an Intel Xeon Silver 4210R CPU.\",\"PeriodicalId\":363806,\"journal\":{\"name\":\"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)\",\"volume\":\"366 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGrid57682.2023.00060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid57682.2023.00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多边形几何运算是计算机图形学、计算机辅助设计和地理信息系统等领域的基础。当使用实际空间数据时,处理此类操作中的退化情况非常重要。流行的Greiner-Hormann (GH)裁剪算法不能在不干扰顶点的情况下正确处理这种情况,从而导致不准确和模糊。在这项工作中,我们并行化了Foster等人的$O$(n2)时间通用多边形裁剪算法,该算法可以处理无扰动的退化情况。我们的CREW PRAM算法可以在O (log n)时间内执行裁剪,使用$n$ + $k$个简单多边形处理器,其中$n$是输入边的数量,$k$是边相交的数量。为了高效地实现GPU,我们采用了三种有效的滤波器,这些滤波器在以前的多边形裁剪工作中没有使用过:1)公共最小边界矩形滤波器,2)基于计数的滤波器和3)线段最小边界矩形滤波器。它们大大减少了80 - 99%的O($n$2)候选边缘对比较,从而显著提高了并行执行速度。在我们的实验中,基于c++ cuda的实现在实际数据集上产生高达40倍的加速,在Nvidia Quadro RTX 5000 GPU上处理两个多边形,总共有174K个顶点,与在Intel Xeon Silver 4210R CPU上运行的顺序福斯特算法相比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient PRAM and Practical GPU Algorithms for Large Polygon Clipping with Degenerate Cases
Polygonal geometric operations are fundamental in domains such as Computer Graphics, Computer-Aided Design, and Geographic Information Systems. Handling degenerate cases in such operations is important when real-world spatial data are used. The popular Greiner-Hormann (GH) clipping algorithm does not handle such cases properly without perturbing vertices leading to inaccuracies and ambiguities. In this work, we parallelize the $O$(n2)-time general polygon clipping algorithm by Foster et al., which can handle degenerate cases without perturbation. Our CREW PRAM algorithm can perform clipping in O (log n) time using $n$ + $k$ number of processors with simple polygons, where $n$ is the number of input edges and $k$ is the number of edge intersections. For efficient GPU implementation, we employ three effective filters which have not been used in prior work on polygon clipping: 1) Common-minimum-bounding-rectangle filter, 2) Count-based filter, and 3) Line-segment-minimum-bounding-rectangle filter. They drastically reduce O($n$2) candidate edge pairs comparisons by 80% - 99%, leading to significantly faster parallel execution. In our experiments, C++ CUDA-based implementation yields up to 40X speedup over real-world datasets, processing two polygons with a total of 174K vertices on an Nvidia Quadro RTX 5000 GPU compared to the sequential Foster's algorithm running on an Intel Xeon Silver 4210R CPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信