使用LDA和日标签池从Twitter中提取事件洞察

Muhammad Haseeb U. R. Rehman Khan, Kei Wakabayashi, Satoshi Fukuyama
{"title":"使用LDA和日标签池从Twitter中提取事件洞察","authors":"Muhammad Haseeb U. R. Rehman Khan, Kei Wakabayashi, Satoshi Fukuyama","doi":"10.1145/3366030.3366090","DOIUrl":null,"url":null,"abstract":"News extraction from Twitter data is a hot topic. But can we extract much more than just news? The purpose of this research is to find, either news is the only information which can be extracted from Twitter data or it contains much more insights about real life events. So, we introduce a technique for analysis of Twitter's raw content. After pre-processing of tweets data, we apply hashtag pooling and extract topics using available topic modeling algorithm Latent Dirichlet Allocation (LDA) without modifying its core machinery. In the second part, estimated number of tweets per day and correlated top hashtags for each topic are calculated using day-hashtag pooling. Finally, the continues time series graph is constructed for topic analysis. Our findings show interesting results of bursty news detection, topic popularity, people's way to perceiving an event, real-life event's transition over time and before & after affects of a specific event.","PeriodicalId":446280,"journal":{"name":"Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Events Insights Extraction from Twitter Using LDA and Day-Hashtag Pooling\",\"authors\":\"Muhammad Haseeb U. R. Rehman Khan, Kei Wakabayashi, Satoshi Fukuyama\",\"doi\":\"10.1145/3366030.3366090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"News extraction from Twitter data is a hot topic. But can we extract much more than just news? The purpose of this research is to find, either news is the only information which can be extracted from Twitter data or it contains much more insights about real life events. So, we introduce a technique for analysis of Twitter's raw content. After pre-processing of tweets data, we apply hashtag pooling and extract topics using available topic modeling algorithm Latent Dirichlet Allocation (LDA) without modifying its core machinery. In the second part, estimated number of tweets per day and correlated top hashtags for each topic are calculated using day-hashtag pooling. Finally, the continues time series graph is constructed for topic analysis. Our findings show interesting results of bursty news detection, topic popularity, people's way to perceiving an event, real-life event's transition over time and before & after affects of a specific event.\",\"PeriodicalId\":446280,\"journal\":{\"name\":\"Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3366030.3366090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366030.3366090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

从Twitter数据中提取新闻是一个热门话题。但除了新闻,我们还能获取更多信息吗?这项研究的目的是发现,要么新闻是唯一可以从Twitter数据中提取的信息,要么它包含了更多关于现实生活事件的见解。因此,我们将介绍一种分析Twitter原始内容的技术。在对推文数据进行预处理后,在不修改其核心机制的情况下,利用可用的主题建模算法潜狄利克雷分配(Latent Dirichlet Allocation, LDA)应用标签池提取主题。在第二部分中,使用日标签池计算每个主题每天的推文估计数量和相关的热门标签。最后,构造连续时间序列图进行主题分析。我们的研究结果显示了突发新闻检测、话题受欢迎程度、人们感知事件的方式、现实生活中事件随时间的转变以及特定事件的前后影响等有趣的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Events Insights Extraction from Twitter Using LDA and Day-Hashtag Pooling
News extraction from Twitter data is a hot topic. But can we extract much more than just news? The purpose of this research is to find, either news is the only information which can be extracted from Twitter data or it contains much more insights about real life events. So, we introduce a technique for analysis of Twitter's raw content. After pre-processing of tweets data, we apply hashtag pooling and extract topics using available topic modeling algorithm Latent Dirichlet Allocation (LDA) without modifying its core machinery. In the second part, estimated number of tweets per day and correlated top hashtags for each topic are calculated using day-hashtag pooling. Finally, the continues time series graph is constructed for topic analysis. Our findings show interesting results of bursty news detection, topic popularity, people's way to perceiving an event, real-life event's transition over time and before & after affects of a specific event.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信