图像隐写分析的粒子群优化特征选择

Guoming Chen, Qiang Chen, Dong Zhang, Weiheng Zhu
{"title":"图像隐写分析的粒子群优化特征选择","authors":"Guoming Chen, Qiang Chen, Dong Zhang, Weiheng Zhu","doi":"10.1109/ICDH.2012.28","DOIUrl":null,"url":null,"abstract":"The purpose of image steganalysis is to detect the presence of hidden messages in cover images. Steganalysis can be considered as a pattern recognition process to decide which class a test image belongs to: the cover images or the stego-images. We present a particle swarm optimization algorithm for feature selection for image steganalysis. Experiment results show that the proposed hybrid algorithm for feature selection increases the testing accuracy of classification. The combination of the feature sets extracted is likely to improve the performance of general steganalysis methods which have more practical value for deterring covert communications and the uncorrelated features extracted contain more discriminatory information when distinguish different kinds of steganography.","PeriodicalId":308799,"journal":{"name":"2012 Fourth International Conference on Digital Home","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Particle Swarm Optimization Feature Selection for Image Steganalysis\",\"authors\":\"Guoming Chen, Qiang Chen, Dong Zhang, Weiheng Zhu\",\"doi\":\"10.1109/ICDH.2012.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of image steganalysis is to detect the presence of hidden messages in cover images. Steganalysis can be considered as a pattern recognition process to decide which class a test image belongs to: the cover images or the stego-images. We present a particle swarm optimization algorithm for feature selection for image steganalysis. Experiment results show that the proposed hybrid algorithm for feature selection increases the testing accuracy of classification. The combination of the feature sets extracted is likely to improve the performance of general steganalysis methods which have more practical value for deterring covert communications and the uncorrelated features extracted contain more discriminatory information when distinguish different kinds of steganography.\",\"PeriodicalId\":308799,\"journal\":{\"name\":\"2012 Fourth International Conference on Digital Home\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fourth International Conference on Digital Home\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDH.2012.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Digital Home","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDH.2012.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

图像隐写分析的目的是检测封面图像中隐藏信息的存在。隐写分析可以看作是一种模式识别过程,用来决定测试图像属于哪一类:封面图像还是隐写图像。提出了一种用于图像隐写分析特征选择的粒子群优化算法。实验结果表明,所提出的混合特征选择算法提高了分类的测试精度。所提取的特征集的组合可能会提高一般隐写分析方法的性能,在阻止隐蔽通信方面具有更大的实用价值,并且所提取的不相关特征在区分不同类型的隐写时包含更多的区别信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle Swarm Optimization Feature Selection for Image Steganalysis
The purpose of image steganalysis is to detect the presence of hidden messages in cover images. Steganalysis can be considered as a pattern recognition process to decide which class a test image belongs to: the cover images or the stego-images. We present a particle swarm optimization algorithm for feature selection for image steganalysis. Experiment results show that the proposed hybrid algorithm for feature selection increases the testing accuracy of classification. The combination of the feature sets extracted is likely to improve the performance of general steganalysis methods which have more practical value for deterring covert communications and the uncorrelated features extracted contain more discriminatory information when distinguish different kinds of steganography.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信