自我监控物联网设备的网络弹性

M. Medwed, V. Nikov, Joost Renes, Tobias Schneider, Nikita Veshchikov
{"title":"自我监控物联网设备的网络弹性","authors":"M. Medwed, V. Nikov, Joost Renes, Tobias Schneider, Nikita Veshchikov","doi":"10.1109/CSR51186.2021.9527995","DOIUrl":null,"url":null,"abstract":"Modern embedded IoT devices are an attractive target for cyber attacks. For example, they can be used to disable entire factories and ask for ransom. Recovery of compromised devices is not an easy task, because malware can subvert the original software and make itself persistent. In addition, many embedded devices do not implement remote recovery procedures and, therefore, require manual intervention.Recent proposals from NIST and TCG define concepts and building blocks for cyber resilience: protection, detection and recovery. In this paper, we describe a system which allows implementing cyber resilient IoT devices that can be recovered remotely and timely. The proposed architecture consists of trusted data monitoring, local and remote attack detection, and enforced connections to remote services as building blocks for attack detection and recovery. Further, hardware- and software-based implementations of such a system are presented.","PeriodicalId":253300,"journal":{"name":"2021 IEEE International Conference on Cyber Security and Resilience (CSR)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Cyber Resilience for Self-Monitoring IoT Devices\",\"authors\":\"M. Medwed, V. Nikov, Joost Renes, Tobias Schneider, Nikita Veshchikov\",\"doi\":\"10.1109/CSR51186.2021.9527995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern embedded IoT devices are an attractive target for cyber attacks. For example, they can be used to disable entire factories and ask for ransom. Recovery of compromised devices is not an easy task, because malware can subvert the original software and make itself persistent. In addition, many embedded devices do not implement remote recovery procedures and, therefore, require manual intervention.Recent proposals from NIST and TCG define concepts and building blocks for cyber resilience: protection, detection and recovery. In this paper, we describe a system which allows implementing cyber resilient IoT devices that can be recovered remotely and timely. The proposed architecture consists of trusted data monitoring, local and remote attack detection, and enforced connections to remote services as building blocks for attack detection and recovery. Further, hardware- and software-based implementations of such a system are presented.\",\"PeriodicalId\":253300,\"journal\":{\"name\":\"2021 IEEE International Conference on Cyber Security and Resilience (CSR)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Cyber Security and Resilience (CSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSR51186.2021.9527995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Cyber Security and Resilience (CSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSR51186.2021.9527995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

现代嵌入式物联网设备是网络攻击的诱人目标。例如,它们可以用来使整个工厂瘫痪并索要赎金。恢复受损设备并非易事,因为恶意软件可以破坏原始软件并使其持久存在。此外,许多嵌入式设备不实现远程恢复过程,因此需要人工干预。NIST和TCG最近提出的建议定义了网络弹性的概念和构建模块:保护、检测和恢复。在本文中,我们描述了一个系统,该系统允许实施可以远程和及时恢复的网络弹性物联网设备。提出的体系结构包括可信数据监控、本地和远程攻击检测,以及强制连接到远程服务,作为攻击检测和恢复的构建块。此外,还介绍了基于硬件和软件的系统实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyber Resilience for Self-Monitoring IoT Devices
Modern embedded IoT devices are an attractive target for cyber attacks. For example, they can be used to disable entire factories and ask for ransom. Recovery of compromised devices is not an easy task, because malware can subvert the original software and make itself persistent. In addition, many embedded devices do not implement remote recovery procedures and, therefore, require manual intervention.Recent proposals from NIST and TCG define concepts and building blocks for cyber resilience: protection, detection and recovery. In this paper, we describe a system which allows implementing cyber resilient IoT devices that can be recovered remotely and timely. The proposed architecture consists of trusted data monitoring, local and remote attack detection, and enforced connections to remote services as building blocks for attack detection and recovery. Further, hardware- and software-based implementations of such a system are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信