计算统一器件架构的GPU高速FDTD仿真算法

N. Takada, T. Shimobaba, N. Masuda, T. Ito
{"title":"计算统一器件架构的GPU高速FDTD仿真算法","authors":"N. Takada, T. Shimobaba, N. Masuda, T. Ito","doi":"10.1109/APS.2009.5171728","DOIUrl":null,"url":null,"abstract":"We proposed an FDTD algorithm for GPU with CUDA. Our GPU-FDTD algorithm performed high-speed FDTD simulation using GPU with CUDA, and maintained single-floating point accuracy. In the larger computational domain, the speedup factor becomes worse. The result suggests that the bottleneck of the FDTD simulation is memory bandwidth. Our GPU-FDTD algorithm can be applied to 3-D FDTD simulation. In future, we plan to implement our GPU-FDTD algorithm to the 3-D FDTD simulation.","PeriodicalId":213759,"journal":{"name":"2009 IEEE Antennas and Propagation Society International Symposium","volume":"419 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"High-speed FDTD simulation algorithm for GPU with compute unified device architecture\",\"authors\":\"N. Takada, T. Shimobaba, N. Masuda, T. Ito\",\"doi\":\"10.1109/APS.2009.5171728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We proposed an FDTD algorithm for GPU with CUDA. Our GPU-FDTD algorithm performed high-speed FDTD simulation using GPU with CUDA, and maintained single-floating point accuracy. In the larger computational domain, the speedup factor becomes worse. The result suggests that the bottleneck of the FDTD simulation is memory bandwidth. Our GPU-FDTD algorithm can be applied to 3-D FDTD simulation. In future, we plan to implement our GPU-FDTD algorithm to the 3-D FDTD simulation.\",\"PeriodicalId\":213759,\"journal\":{\"name\":\"2009 IEEE Antennas and Propagation Society International Symposium\",\"volume\":\"419 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Antennas and Propagation Society International Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APS.2009.5171728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Antennas and Propagation Society International Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.2009.5171728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

提出了一种基于CUDA的GPU时域有限差分算法。我们的GPU-FDTD算法使用GPU和CUDA进行高速FDTD仿真,并保持单浮点精度。在更大的计算域中,加速系数变得更差。结果表明,FDTD仿真的瓶颈是内存带宽。我们的GPU-FDTD算法可以应用于三维FDTD仿真。未来,我们计划将我们的GPU-FDTD算法实现到三维FDTD仿真中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-speed FDTD simulation algorithm for GPU with compute unified device architecture
We proposed an FDTD algorithm for GPU with CUDA. Our GPU-FDTD algorithm performed high-speed FDTD simulation using GPU with CUDA, and maintained single-floating point accuracy. In the larger computational domain, the speedup factor becomes worse. The result suggests that the bottleneck of the FDTD simulation is memory bandwidth. Our GPU-FDTD algorithm can be applied to 3-D FDTD simulation. In future, we plan to implement our GPU-FDTD algorithm to the 3-D FDTD simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信