基于ls的VHR卫星影像建筑物自动提取的变形状模型

Weian Wang, Yi Liu, Jiao Lu, B. Zheng
{"title":"基于ls的VHR卫星影像建筑物自动提取的变形状模型","authors":"Weian Wang, Yi Liu, Jiao Lu, B. Zheng","doi":"10.1109/URS.2009.5137647","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a level set based automatic building extraction method using prior shapes. We introduce a variable shape model which together with the level set function for segmentation dynamically indicates the region with which the prior shape should be compared. Our model is capable of segmenting an object from an image based on the image intensity as well as the prior shape. In addition, the proposed model permits translation, scaling and rotation of the prior shape. Moreover, a fast way is also established for the minimization of our functional. The experiments validate our model.","PeriodicalId":154334,"journal":{"name":"2009 Joint Urban Remote Sensing Event","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Variable shape models for LS-based automatic building extraction from VHR satellite imagery\",\"authors\":\"Weian Wang, Yi Liu, Jiao Lu, B. Zheng\",\"doi\":\"10.1109/URS.2009.5137647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a level set based automatic building extraction method using prior shapes. We introduce a variable shape model which together with the level set function for segmentation dynamically indicates the region with which the prior shape should be compared. Our model is capable of segmenting an object from an image based on the image intensity as well as the prior shape. In addition, the proposed model permits translation, scaling and rotation of the prior shape. Moreover, a fast way is also established for the minimization of our functional. The experiments validate our model.\",\"PeriodicalId\":154334,\"journal\":{\"name\":\"2009 Joint Urban Remote Sensing Event\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Joint Urban Remote Sensing Event\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URS.2009.5137647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Joint Urban Remote Sensing Event","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URS.2009.5137647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于先验形状的水平集自动建筑物提取方法。我们引入了一个可变形状模型,该模型与用于分割的水平集函数一起动态地指示应该与先前形状进行比较的区域。我们的模型能够根据图像强度和先验形状从图像中分割出物体。此外,所提出的模型允许先前形状的平移,缩放和旋转。此外,还建立了一种简化函数的快速方法。实验验证了我们的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variable shape models for LS-based automatic building extraction from VHR satellite imagery
In this paper, we propose a level set based automatic building extraction method using prior shapes. We introduce a variable shape model which together with the level set function for segmentation dynamically indicates the region with which the prior shape should be compared. Our model is capable of segmenting an object from an image based on the image intensity as well as the prior shape. In addition, the proposed model permits translation, scaling and rotation of the prior shape. Moreover, a fast way is also established for the minimization of our functional. The experiments validate our model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信