基于演化轨迹数据的人群增量发现

Thi Thi Shein, S. Puntheeranurak, Makoto Imamura
{"title":"基于演化轨迹数据的人群增量发现","authors":"Thi Thi Shein, S. Puntheeranurak, Makoto Imamura","doi":"10.1109/ICEAST.2018.8434397","DOIUrl":null,"url":null,"abstract":"Discovering the useful knowledge from the evolving trajectory data stream contributes to real-world applications such as animal movement behavior analysis, traffic monitoring, and weather forecasting. Among these explorations, moving objects' crowd detection is a challenging task and enabling to find anomalies in the traffic system. In a real application, a large volume of trajectory data stream arrives continuously for immediate data analysis. Due to the changes of these trajectory data, there is a remaining challenge to discover crowd efficiently. In this paper, we propose incremental crowd discovery framework over evolving data stream to reduce computational time complexity. In our framework, firstly we discover the group by proposing micro-group based clustering, and then we incrementally detect the crowd structure form. Experiments of our proposed system will conduct on real taxi trajectory data and synthetic data.","PeriodicalId":138654,"journal":{"name":"2018 International Conference on Engineering, Applied Sciences, and Technology (ICEAST)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Incremental Discovery of Crowd from Evolving Trajectory Data\",\"authors\":\"Thi Thi Shein, S. Puntheeranurak, Makoto Imamura\",\"doi\":\"10.1109/ICEAST.2018.8434397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discovering the useful knowledge from the evolving trajectory data stream contributes to real-world applications such as animal movement behavior analysis, traffic monitoring, and weather forecasting. Among these explorations, moving objects' crowd detection is a challenging task and enabling to find anomalies in the traffic system. In a real application, a large volume of trajectory data stream arrives continuously for immediate data analysis. Due to the changes of these trajectory data, there is a remaining challenge to discover crowd efficiently. In this paper, we propose incremental crowd discovery framework over evolving data stream to reduce computational time complexity. In our framework, firstly we discover the group by proposing micro-group based clustering, and then we incrementally detect the crowd structure form. Experiments of our proposed system will conduct on real taxi trajectory data and synthetic data.\",\"PeriodicalId\":138654,\"journal\":{\"name\":\"2018 International Conference on Engineering, Applied Sciences, and Technology (ICEAST)\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Engineering, Applied Sciences, and Technology (ICEAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEAST.2018.8434397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Engineering, Applied Sciences, and Technology (ICEAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAST.2018.8434397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

从不断发展的轨迹数据流中发现有用的知识有助于现实世界的应用,如动物运动行为分析、交通监测和天气预报。在这些探索中,移动物体的人群检测是一项具有挑战性的任务,能够发现交通系统中的异常。在实际应用中,大量的轨迹数据流连续到达,需要进行即时的数据分析。由于这些轨迹数据的变化,有效地发现人群仍然是一个挑战。本文提出了基于演化数据流的增量人群发现框架,以降低计算时间复杂度。在该框架中,我们首先通过提出基于微群的聚类来发现群体,然后逐步检测群体结构形式。我们提出的系统将在真实的滑行轨迹数据和合成数据上进行实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incremental Discovery of Crowd from Evolving Trajectory Data
Discovering the useful knowledge from the evolving trajectory data stream contributes to real-world applications such as animal movement behavior analysis, traffic monitoring, and weather forecasting. Among these explorations, moving objects' crowd detection is a challenging task and enabling to find anomalies in the traffic system. In a real application, a large volume of trajectory data stream arrives continuously for immediate data analysis. Due to the changes of these trajectory data, there is a remaining challenge to discover crowd efficiently. In this paper, we propose incremental crowd discovery framework over evolving data stream to reduce computational time complexity. In our framework, firstly we discover the group by proposing micro-group based clustering, and then we incrementally detect the crowd structure form. Experiments of our proposed system will conduct on real taxi trajectory data and synthetic data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信