基于阻尼高斯-牛顿法的大规模稀疏张量分解

Teresa M. Ranadive, M. Baskaran
{"title":"基于阻尼高斯-牛顿法的大规模稀疏张量分解","authors":"Teresa M. Ranadive, M. Baskaran","doi":"10.1109/HPEC43674.2020.9286202","DOIUrl":null,"url":null,"abstract":"CANDECOMP/PARAFAC (CP) tensor decomposition is a popular unsupervised machine learning method with numerous applications. This process involves modeling a high-dimensional, multi-modal array (a tensor) as the sum of several low-dimensional components. In order to decompose a tensor, one must solve an optimization problem, whose objective is often given by the sum of the squares of the tensor and decomposition model entry differences. One algorithm occasionally utilized to solve such problems is CP-OPT-DGN, a damped Gauss-Newton all-at-once optimization method for CP tensor decomposition. However, there are currently no published results that consider the decomposition of large-scale (with up to billions of non-zeros), sparse tensors using this algorithm. This work considers the decomposition of large-scale tensors using an efficiently implemented CP-OPT-DGN method. It is observed that CP-OPT-DGN significantly outperforms CP-ALS (CP-Alternating Least Squares) and CP-OPT-QNR (a quasi-Newton-Raphson all-at-once optimization method for CP tensor decomposition), two other widely used tensor decomposition algorithms, in terms of accuracy and latent behavior detection.","PeriodicalId":168544,"journal":{"name":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Large-scale Sparse Tensor Decomposition Using a Damped Gauss-Newton Method\",\"authors\":\"Teresa M. Ranadive, M. Baskaran\",\"doi\":\"10.1109/HPEC43674.2020.9286202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CANDECOMP/PARAFAC (CP) tensor decomposition is a popular unsupervised machine learning method with numerous applications. This process involves modeling a high-dimensional, multi-modal array (a tensor) as the sum of several low-dimensional components. In order to decompose a tensor, one must solve an optimization problem, whose objective is often given by the sum of the squares of the tensor and decomposition model entry differences. One algorithm occasionally utilized to solve such problems is CP-OPT-DGN, a damped Gauss-Newton all-at-once optimization method for CP tensor decomposition. However, there are currently no published results that consider the decomposition of large-scale (with up to billions of non-zeros), sparse tensors using this algorithm. This work considers the decomposition of large-scale tensors using an efficiently implemented CP-OPT-DGN method. It is observed that CP-OPT-DGN significantly outperforms CP-ALS (CP-Alternating Least Squares) and CP-OPT-QNR (a quasi-Newton-Raphson all-at-once optimization method for CP tensor decomposition), two other widely used tensor decomposition algorithms, in terms of accuracy and latent behavior detection.\",\"PeriodicalId\":168544,\"journal\":{\"name\":\"2020 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC43674.2020.9286202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC43674.2020.9286202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

CANDECOMP/PARAFAC (CP)张量分解是一种流行的无监督机器学习方法,应用广泛。这个过程包括将一个高维、多模态数组(张量)建模为几个低维分量的和。为了分解张量,必须解决一个优化问题,其目标通常由张量和分解模型入口差的平方和给出。偶尔用于解决此类问题的一种算法是CP- opt - dgn,这是一种用于CP张量分解的阻尼高斯-牛顿一次性优化方法。然而,目前还没有发表的结果考虑使用该算法分解大规模(多达数十亿个非零)的稀疏张量。这项工作考虑了使用有效实现的CP-OPT-DGN方法分解大规模张量。在精度和潜在行为检测方面,CP- opt - dgn显著优于CP- als (CP-交替最小二乘)和CP- opt - qnr (CP张量分解的准牛顿- raphson一次性优化方法),这是另外两种广泛使用的张量分解算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-scale Sparse Tensor Decomposition Using a Damped Gauss-Newton Method
CANDECOMP/PARAFAC (CP) tensor decomposition is a popular unsupervised machine learning method with numerous applications. This process involves modeling a high-dimensional, multi-modal array (a tensor) as the sum of several low-dimensional components. In order to decompose a tensor, one must solve an optimization problem, whose objective is often given by the sum of the squares of the tensor and decomposition model entry differences. One algorithm occasionally utilized to solve such problems is CP-OPT-DGN, a damped Gauss-Newton all-at-once optimization method for CP tensor decomposition. However, there are currently no published results that consider the decomposition of large-scale (with up to billions of non-zeros), sparse tensors using this algorithm. This work considers the decomposition of large-scale tensors using an efficiently implemented CP-OPT-DGN method. It is observed that CP-OPT-DGN significantly outperforms CP-ALS (CP-Alternating Least Squares) and CP-OPT-QNR (a quasi-Newton-Raphson all-at-once optimization method for CP tensor decomposition), two other widely used tensor decomposition algorithms, in terms of accuracy and latent behavior detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信