微生物相互作用数学模型的阈值

S. Jang, B. Jang
{"title":"微生物相互作用数学模型的阈值","authors":"S. Jang, B. Jang","doi":"10.1109/CBMS.2000.856874","DOIUrl":null,"url":null,"abstract":"A mathematical model which consists of nutrient, prey and predator for microbial interaction is proposed. The model assumes that the predator may consume its own population and also incorporates the mechanism that the nutrient is growth-limiting to the prey population at low concentrations but may be growth-inhibiting at high concentrations. It is demonstrated that intratrophic predation of the top predator has no effect on the dynamics of the lower trophic levels. However, it may alter the dynamics of the higher trophic level.","PeriodicalId":189930,"journal":{"name":"Proceedings 13th IEEE Symposium on Computer-Based Medical Systems. CBMS 2000","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Thresholds for mathematical models of microbial interaction\",\"authors\":\"S. Jang, B. Jang\",\"doi\":\"10.1109/CBMS.2000.856874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mathematical model which consists of nutrient, prey and predator for microbial interaction is proposed. The model assumes that the predator may consume its own population and also incorporates the mechanism that the nutrient is growth-limiting to the prey population at low concentrations but may be growth-inhibiting at high concentrations. It is demonstrated that intratrophic predation of the top predator has no effect on the dynamics of the lower trophic levels. However, it may alter the dynamics of the higher trophic level.\",\"PeriodicalId\":189930,\"journal\":{\"name\":\"Proceedings 13th IEEE Symposium on Computer-Based Medical Systems. CBMS 2000\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 13th IEEE Symposium on Computer-Based Medical Systems. CBMS 2000\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2000.856874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 13th IEEE Symposium on Computer-Based Medical Systems. CBMS 2000","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2000.856874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了由营养物、猎物和捕食者组成的微生物相互作用数学模型。该模型假设捕食者可能会消耗自己的种群,并且还包含了营养物质在低浓度下限制猎物种群生长,而在高浓度下可能抑制生长的机制。结果表明,上层捕食者的营养内捕食对下层营养层的动态变化没有影响。然而,它可能改变更高营养水平的动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thresholds for mathematical models of microbial interaction
A mathematical model which consists of nutrient, prey and predator for microbial interaction is proposed. The model assumes that the predator may consume its own population and also incorporates the mechanism that the nutrient is growth-limiting to the prey population at low concentrations but may be growth-inhibiting at high concentrations. It is demonstrated that intratrophic predation of the top predator has no effect on the dynamics of the lower trophic levels. However, it may alter the dynamics of the higher trophic level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信