{"title":"跟踪探测器CO$_2$蒸发冷却的系统设计挑战","authors":"P. Tropea","doi":"10.22323/1.348.0046","DOIUrl":null,"url":null,"abstract":"CO2 evaporative cooling has become one of the most popular thermal management technologies for silicon detectors to be operated at low temperature. At LHC, this solution is already in use on the LHCb Velo, the ATLAS IBL and the CMS Phase I Pixel. The LHCb Velo upgrade and the UT detectors will be cooled in the same way as of 2019, as well as ATLAS and CMS upgraded tracking and vertexing detectors for the HL-LHC (2025). In order to fully exploit the heat removal capacity which can be achieved with carbon dioxide in evaporative mode, the cooling system needs a very careful design, combining the process, the transfer lines and the on-detector evaporators. This work discusses the challenges for the design of an optimised CO2 cooling system, including the mechanics, the thermal interfaces and the process instrumentation for controls and monitoring. Examples of presently adopted solutions are given, together with their limits and the needed further development in order to achieve reliable systems of much higher cooling power as in HL-LHC detectors.","PeriodicalId":267466,"journal":{"name":"Proceedings of The 27th International Workshop on Vertex Detectors — PoS(VERTEX2018)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"System design challenges for CO$_2$ evaporative cooling in tracking detectors\",\"authors\":\"P. Tropea\",\"doi\":\"10.22323/1.348.0046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CO2 evaporative cooling has become one of the most popular thermal management technologies for silicon detectors to be operated at low temperature. At LHC, this solution is already in use on the LHCb Velo, the ATLAS IBL and the CMS Phase I Pixel. The LHCb Velo upgrade and the UT detectors will be cooled in the same way as of 2019, as well as ATLAS and CMS upgraded tracking and vertexing detectors for the HL-LHC (2025). In order to fully exploit the heat removal capacity which can be achieved with carbon dioxide in evaporative mode, the cooling system needs a very careful design, combining the process, the transfer lines and the on-detector evaporators. This work discusses the challenges for the design of an optimised CO2 cooling system, including the mechanics, the thermal interfaces and the process instrumentation for controls and monitoring. Examples of presently adopted solutions are given, together with their limits and the needed further development in order to achieve reliable systems of much higher cooling power as in HL-LHC detectors.\",\"PeriodicalId\":267466,\"journal\":{\"name\":\"Proceedings of The 27th International Workshop on Vertex Detectors — PoS(VERTEX2018)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The 27th International Workshop on Vertex Detectors — PoS(VERTEX2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.348.0046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 27th International Workshop on Vertex Detectors — PoS(VERTEX2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.348.0046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
二氧化碳蒸发冷却已成为硅探测器在低温下运行时最流行的热管理技术之一。在大型强子对撞机,这种解决方案已经在LHCb Velo、ATLAS IBL和CMS Phase I Pixel上使用。LHCb Velo升级和UT探测器将以与2019年相同的方式冷却,ATLAS和CMS升级了HL-LHC(2025)的跟踪和顶点探测器。为了充分利用蒸发模式下二氧化碳的排热能力,冷却系统需要非常仔细的设计,将过程、传输线和探测器上的蒸发器结合起来。这项工作讨论了优化二氧化碳冷却系统设计的挑战,包括机械,热界面和用于控制和监测的过程仪表。给出了目前采用的解决方案的例子,以及它们的局限性和需要进一步发展,以实现像HL-LHC探测器那样具有更高冷却功率的可靠系统。
System design challenges for CO$_2$ evaporative cooling in tracking detectors
CO2 evaporative cooling has become one of the most popular thermal management technologies for silicon detectors to be operated at low temperature. At LHC, this solution is already in use on the LHCb Velo, the ATLAS IBL and the CMS Phase I Pixel. The LHCb Velo upgrade and the UT detectors will be cooled in the same way as of 2019, as well as ATLAS and CMS upgraded tracking and vertexing detectors for the HL-LHC (2025). In order to fully exploit the heat removal capacity which can be achieved with carbon dioxide in evaporative mode, the cooling system needs a very careful design, combining the process, the transfer lines and the on-detector evaporators. This work discusses the challenges for the design of an optimised CO2 cooling system, including the mechanics, the thermal interfaces and the process instrumentation for controls and monitoring. Examples of presently adopted solutions are given, together with their limits and the needed further development in order to achieve reliable systems of much higher cooling power as in HL-LHC detectors.